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Abstract

➢ Impurity seeding is necessary for achieving divertor detachment, and also

has essential effects on ELM control: possibility of simultaneous control of

the transient and steady-state heat load.

➢ To investigate the mechanism of impurity on ELM behavior, a systemic

simulation study is carried out using BOUT++ six-field two-fluid module [1]

with impurity model [2], based on the EAST experiment [3].

➢ Linear simulation indicates impurities introduce extra vorticity, enhancing

the stabilizing effect of radial electric field shear on peeling-ballooning

mode, which can be characterized by impurity mass density ratio.

➢ Nonlinear simulation shows a impurity density “threshold” for ELM

suppression and the “two-stage burst” feature of ELM evolution:

⚫ The first stage is related to the P-B stability (drop with increasing Nimp)

⚫ The second stage is related to the magnetic flutter driven by DTM

⚫ ELM size can be reduced when the second stage is suppressed

Impurity effect within the simulation model

Nonlinear simulation: two-stage burst

➢ Compared to the original six-field two-fluid model, the dynamic effect of

impurities are primarily reflected in the vorticity expression:

➢ The effective density increases with impurity seeding (inertia effect)

➢ Net vorticity introduced by impurity (impurity vorticity)

➢ Simulation study based on EAST equilibrium shot #69033

➢ Only one impurity species (Ne8+) is considered. Initial impurity density is

calculated by:

➢ The strength of radial electric field shear is characterized by:

➢ The contribution of magnetic flutter on the radial electric field shear variation

is calculated by:

Linear simulation: stabilization mechanism 
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➢ Profile change: growth rate of 4.495s is significantly larger than that of 3.95s.

➢ Increase of inertia: high n stabilized, low n destabilized.

➢ Extra vorticity: significantly stabilized for all n modes.

➢ According to localized eigenmode analysis, ballooning mode growth :

impurity mass density ratio:

➢ The square of simulated growth rate of n = 10 mode with different Rimp are

found in good agreement with theoretical prediction above.
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➢ Two stage burst
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Magnetic flutter: drift tearing mode

Nonlinear response of ELM to

the impurity in Rimp-Te space

Effect on ELM size:

⚫ I→III: No effect

⚫ I →II: mitigation

⚫ I, II, III →IV: suppression

Mechanism: enhancing radial

electric field shear stabilization
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Before seeding

Small ELM
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ELM suppression

➢ Burst B is triggered by reduction of radial electric field shear through

magnetic flutter
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