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Motivation
We donʼt yet have a single, systematic method to design/position divertor diagnostics
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What is BED?
Bayesian Experimental Design BED: choose experiments/sensors that maximise 
expected information gain about specific quantities of interest.

D Greenhouse et al 2025 Plasma Phys. Control. Fusion 67 035006



Design Goal
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Given candidate sensor locations and expected plasma states, 
choose the fewest, most informative sensors for our QoIs 

(e.g., peak q, heat-flux width, tile hotspots).



2D Toy Workflow
Data: 25 SOLPS heat-flux profiles → GP fit → 100+ sampled profiles for 2D MASTU slice.

Thermal model: Laplace (                ) solved by Gauss–Seidel; Neumann BC from                           at the PF 
surface and Dirichlet BC of             .

Purpose: validate BED plumbing & scoring at low cost.

What is a GP?
Gaussian Process GP: a 
non-parametric regression giving
mean + uncertainty over 
functions.
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Results: 2D prototype
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BED Workflow

: upstream states 
→ q profiles
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: sensor temps

what we want after measuring

probabilistic measure of misfit distribution of upstream states

normaliser



BED Workflow

: upstream states 
→ q profiles
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: sensor temps

In BED, we need to understand how the difference between the evidence and likelihood 
behaves across designs.
The Expected Information Gain EIG uses the log of this evidence to score designs:

how well the model 
predicts the data how likely is the data overallexpected information gain across 

all outcomes



Uncertainty Engine:
Sensor Designer
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Inputs:
● Sensor dataset    : temps at candidate 

points
● QoI dataset         :     ,    , peak   , tile hotspot 

temp, etc.
● Uncertainties: model/measurement noise, 

geometric tolerances
● Scoring: EIG via sensors (exact) and 

QoI-utility via GP surrogates (fast).

Optimisation: Genetic algorithm over sensor 
subsets.



3D Physics Chain
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1. HEAT for optical approximation of divertor heat-flux deposition on detailed 3D tiles.

2. OpenFOAM for temperature field under those loads.

3. Surface grid “snapˮ → candidate thermocouple points (temps become y).

4. Bayesian experimental design → suggested sensor sets

5. Select best sensors → convert to useful formats & visualise

Looby T et al. 2022 Fusion Science & Technology 78 1027



Results: 3D Pilot
1 2 3 4 5 6 7 8 9

8

Inputs:
NSTXU Divertor Geometry IBDH region]

Power radiated in SOL  30%

No. of Evals = 333

Goal: To mimic future power plant conditions to 
optimise surface thermocouple placement.
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Results: 3D Pilot
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What next?

Bigger HEAT ensembles

Extensive MASTU geometry

Multi-diagnostic fusion 

TCIR+bolometry)

Detachment Heat Flux Data

IR camera placement/FOV optimisation

Add Toroidal Ripple
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Thank you for your time.

Michael Battye
mike.battye@york.ac.uk



What is BED?
1. State your goal QoI

What do you ultimately care about? (e.g., heat flux width, 
Gaussian spreading, peak heat flux, or full heat flux 
profile.

2. Choose a design space
Ξ: admissible sensor layouts ξ (locations, depth, count, 
wiring limits).

3. Specify a prior 
Physics/simulation-informed uncertainty over heat-flux 
parameters

4. Forward model 
Maps parameters → temperatures at sensor sites 
FEM/FOAM or a GP surrogate).

5. Noise model
                      (homoscedastic) or                  (correlated).

6. Likelihood

7. Predictive (marginal)
p(y∣ξ): integrate out θ. If using a GP  PCA, this is 
approximately Gaussian with known μ,Σ.
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9. Estimator choice

- Small n/simple F: nested MC
- GP surrogate: compute entropies via log-det and low-rank 
updates; use small joint batches if needed.

10. Optimise ξ
- Discrete subsets: GA/beam search with caching; proxy 
“exactˮ objective for large sets.
- Continuous placement: gradient-based SGD/Adam), 
possibly with variational bounds.

11. Pick a design & validate
Simulate posterior (or run an end-to-end synthetic 
“reconstructionˮ) to verify uncertainty reduction in QoIs.

12. Adaptive design

BED turns sensor placement into an optimisation problem: maximise EIG so the posterior 
over heat-flux parameters is as tight and decision-useful as possible.



Equations

Bayesʼ Rule

Forward Model
Gaussian entropy

EIG decomposition

EIG as mutual information (entropy drop)

Monte Carlo estimator



Dataset mean q_avg: 11.683
Dataset mean q_p95 59.627

Fractional/relative mean avg_uncertainty_q_avg per number of 
sensors (relative to dataset mean q_avg value):
1 sensor(s): 0.163
2 sensor(s): 0.015
3 sensor(s): 0.006
4 sensor(s): 0.005
5 sensor(s): 0.005
6 sensor(s): 0.005
7 sensor(s): 0.005
8 sensor(s): 0.005
9 sensor(s): 0.005

Fractional/relative mean 
avg_uncertainty_q_p95 per number of 
sensors (relative to dataset mean q_p95 
value):
1 sensor(s): 0.060
2 sensor(s): 0.016
3 sensor(s): 0.007
4 sensor(s): 0.007
5 sensor(s): 0.006
6 sensor(s): 0.006
7 sensor(s): 0.006
8 sensor(s): 0.007
9 sensor(s): 0.006


