

Bayesian Experimental Design for Divertor Heat Loads

Michael Battye^a, Cyd Cowley^b, Dan Greenhouse^b, Ethan Hargrove^b

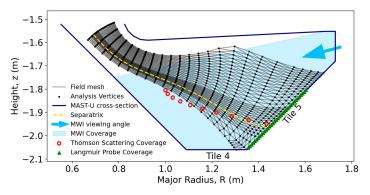
^a University of York

^b digiLab

digilab wiversity of York

Motivation

We don't yet have a single, systematic method to design/position divertor diagnostics



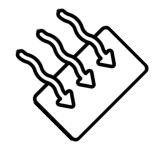
D Greenhouse et al 2025 Plasma Phys. Control. Fusion 67 035006

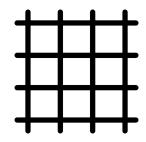
What is BED?

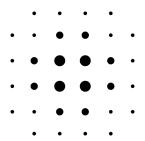
Bayesian Experimental Design (BED): choose experiments/sensors that *maximise* expected information gain about specific quantities of interest.

Design Goal

Given candidate sensor locations and expected plasma states, choose the fewest, most informative sensors for our Qols (e.g., peak q, heat-flux width, tile hotspots).







2D Toy Workflow

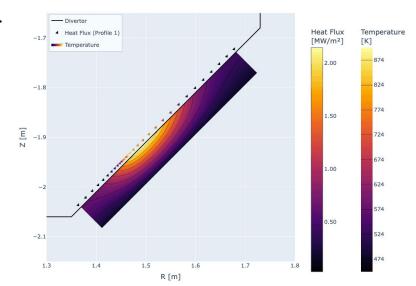
Data: 25 SOLPS heat-flux profiles → GP fit → 100+ sampled profiles for 2D MAST-U slice.

Thermal model: Laplace ($\nabla^2 T = 0$) solved by Gauss–Seidel; Neumann BC from $q = -k\partial T/\partial n$ at the PF surface and Dirichlet BC of $T_{\rm coolant}$.

Purpose: validate BED plumbing & scoring at low cost.

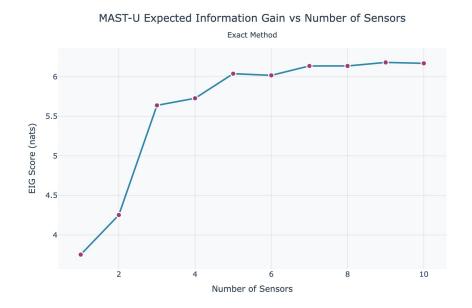
What is a GP?

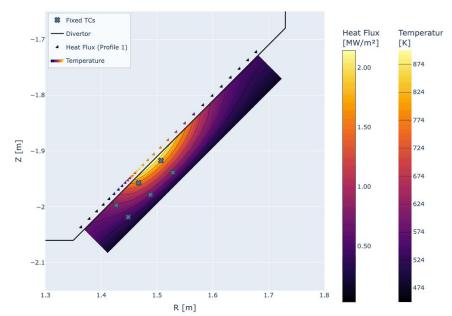
Gaussian Process (GP): a non-parametric regression giving mean + uncertainty over functions.



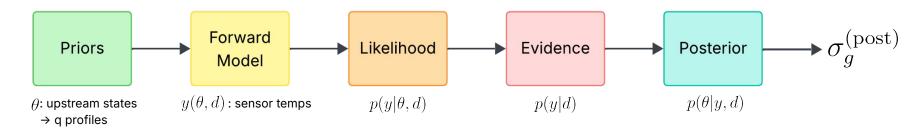
Results: 2D prototype

MAST-U State 1





BED Workflow

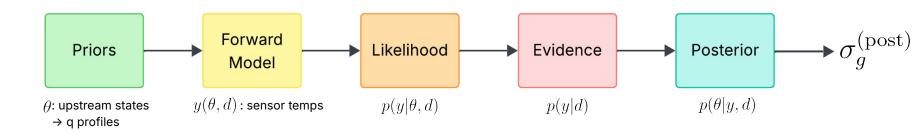


probabilistic measure of misfit distribution of upstream states

normaliser

$$p(\theta \mid y, d) = \frac{p(y \mid \theta, d) \, p(\theta)}{p(y \mid d)}$$

BED Workflow



In **BED**, we need to understand how the difference between the *evidence* and *likelihood* behaves across designs.

The **Expected Information Gain (EIG)** uses the *log of this evidence* to score designs:

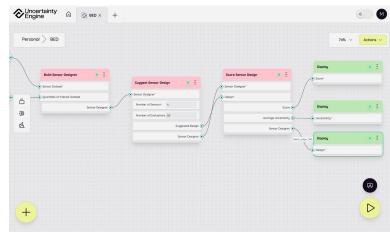
$$EIG(d) = \mathbb{E}_{y,\theta}[\log p(y \mid \theta, d) - \log p(y \mid d)]$$

Uncertainty Engine: Sensor Designer

Inputs:

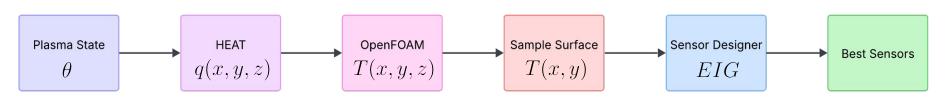
- Sensor dataset y: temps at candidate points
- Qol dataset $g(\theta)$: λ_q , S, peak q, tile hotspot temp, etc.
- Uncertainties: model/measurement noise, geometric tolerances
- Scoring: EIG via sensors (exact) and Qol-utility via GP surrogates (fast).

Optimisation: Genetic algorithm over sensor subsets.



3D Physics Chain

- 1. **HEAT** for optical approximation of divertor **heat-flux deposition** on detailed 3-D tiles.
- 2. **OpenFOAM** for **temperature field** under those loads.
- 3. Surface grid "snap" → candidate thermocouple points (temps become y).
- 4. **Bayesian experimental design** → suggested sensor sets
- 5. Select **best sensors** → convert to useful formats & visualise



Inputs:

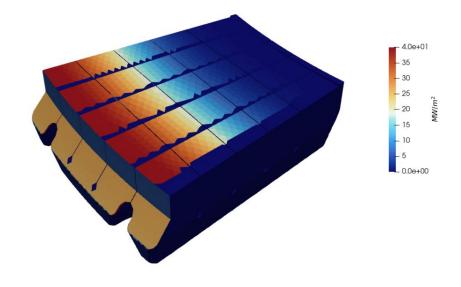
NSTX-U Divertor Geometry [IBDH region]

$$P_{\text{SOL}} = 30MW$$

Power radiated in SOL = 30%

$$\lambda_{q,\text{CN}} \, [\text{mm}] \in [2.0, \, 20.0]_{\Delta 0.5}$$
 $S \, [\text{mm}] \in [0.0, \, 5.0]_{\Delta 0.2}$ No. of Evals = 333

Goal: To mimic future power plant conditions to optimise surface thermocouple placement.

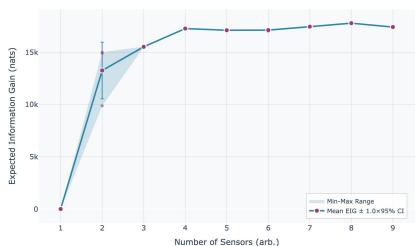


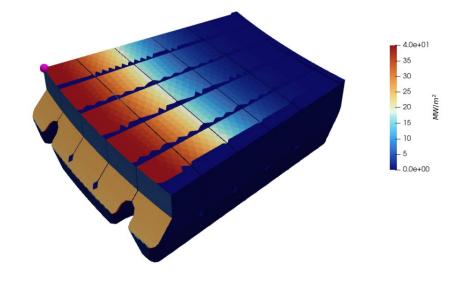
1 2 3 4 5 6 7 8 9

$$\langle EIG \rangle = 12.7 \pm 1.3 \text{ nats}$$

$$\frac{\sigma_{\lambda_{q,CN}}}{\langle \lambda_{q,CN} \rangle} = 12.9\%$$
 $\frac{\sigma_S}{\langle S \rangle} = 56.5\%$

Expected Information Gain vs Number of Sensors



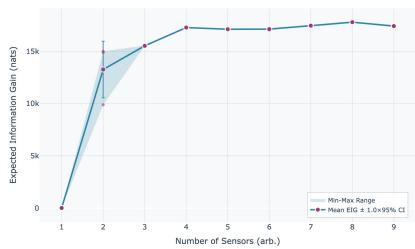


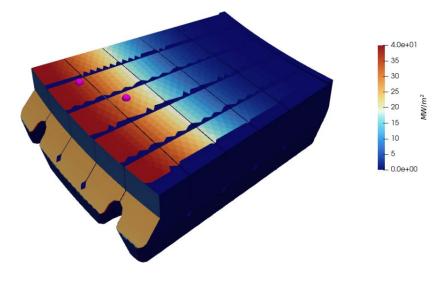
$$\langle EIG \rangle = 13~000 \pm 2~000~\mathrm{nats}$$

$$\frac{\sigma_{\lambda_{q,CN}}}{\langle \lambda_{q,CN} \rangle} = 1.5\%$$
 $\frac{\sigma_S}{\langle S \rangle} = 5.6\%$

$$\frac{\sigma_S}{\langle S \rangle} = 5.6\%$$

Expected Information Gain vs Number of Sensors



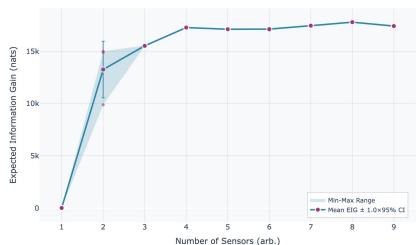


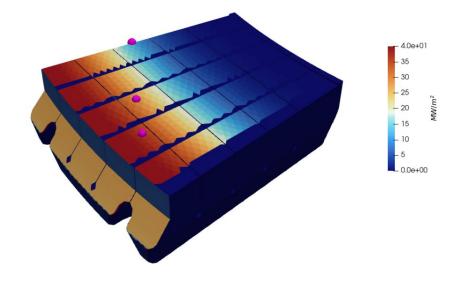
1 2 3 4 5 6 7 8 9

$$\langle EIG \rangle = 15\ 520 \pm 10\ \mathrm{nats}$$

$$\frac{\sigma_{\lambda_{q,CN}}}{\langle \lambda_{q,CN} \rangle} = 1.0\%$$
 $\frac{\sigma_S}{\langle S \rangle} = 0.9\%$

Expected Information Gain vs Number of Sensors



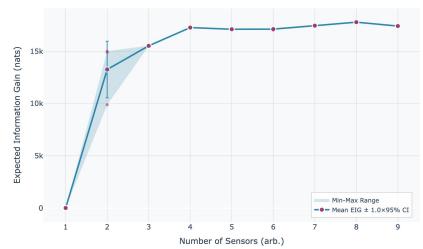


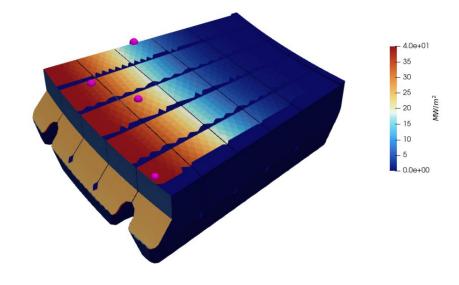
1 2 3 4 5 6 7 8 9

$$\langle EIG \rangle = 17~267 \pm 2~{\rm nats}$$

$$\frac{\sigma_{\lambda_{q,CN}}}{\langle \lambda_{q,CN} \rangle} = 0.5\%$$
 $\frac{\sigma_S}{\langle S \rangle} = 0.8\%$

Expected Information Gain vs Number of Sensors

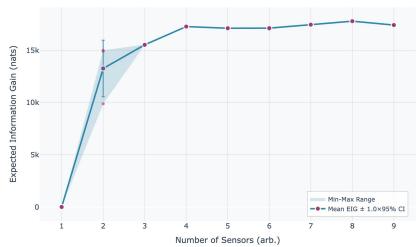


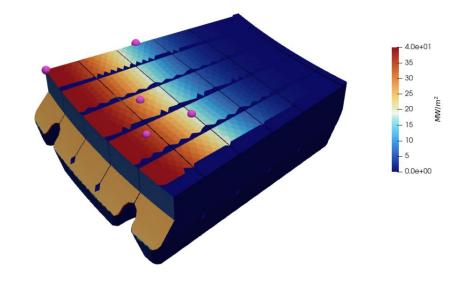


1 2 3 4 5 6 7 8 9

$$\langle EIG \rangle = 17\ 110 \pm 20\ \mathrm{nats} \qquad \frac{\sigma_{\lambda_{q,CN}}}{\langle \lambda_{q,CN} \rangle} = 0.5\% \qquad \frac{\sigma_S}{\langle S \rangle} = 0.8\%$$

Expected Information Gain vs Number of Sensors

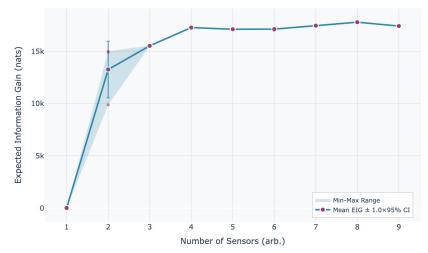


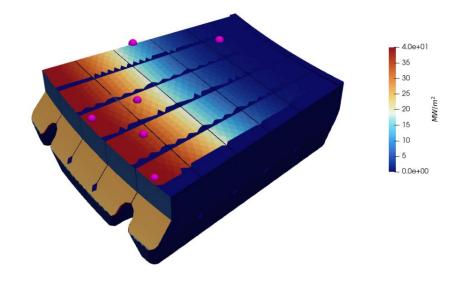


1 2 3 4 5 6 7 8 9

$$\langle EIG \rangle = 17\,120 \pm 70 \text{ nats} \qquad \frac{\sigma_{\lambda_{q,CN}}}{\langle \lambda_{q,CN} \rangle} = 0.5\% \qquad \frac{\sigma_S}{\langle S \rangle} = 0.8\%$$

Expected Information Gain vs Number of Sensors

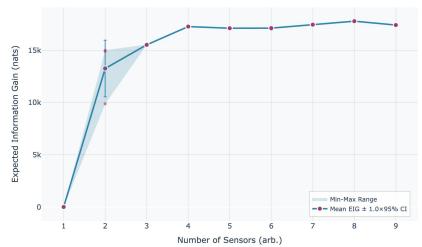


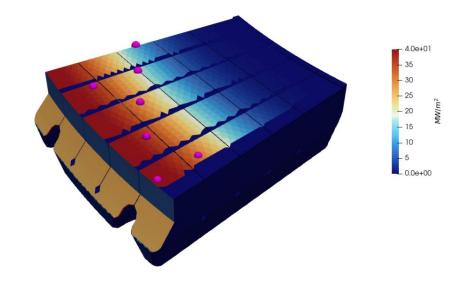


1 2 3 4 5 6 7 8 9

$$\langle EIG \rangle = 17450 \pm 20 \text{ nats} \qquad \frac{\sigma_{\lambda_{q,CN}}}{\langle \lambda_{q,CN} \rangle} = 0.5\% \qquad \frac{\sigma_S}{\langle S \rangle} = 0.8\%$$

Expected Information Gain vs Number of Sensors

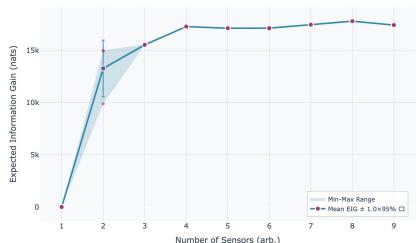


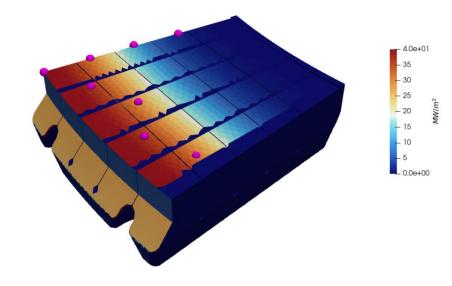


1 2 3 4 5 6 7 8 9

$$\langle EIG \rangle = 17780 \pm 20 \text{ nats} \qquad \frac{\sigma_{\lambda_{q,CN}}}{\langle \lambda_{q,CN} \rangle} = 0.5\% \qquad \frac{\sigma_S}{\langle S \rangle} = 0.7\%$$

Expected Information Gain vs Number of Sensors

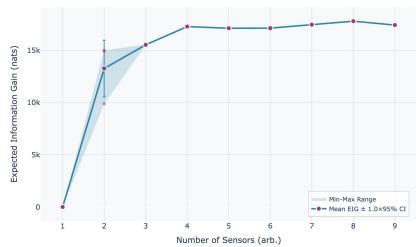


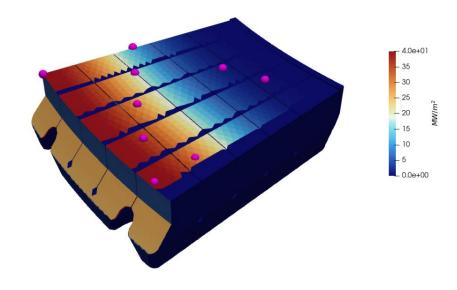


1 2 3 4 5 6 7 8 9

$$\langle EIG \rangle = 17450 \pm 20 \text{ nats} \qquad \frac{\sigma_{\lambda_{q,CN}}}{\langle \lambda_{q,CN} \rangle} = 0.5\% \qquad \frac{\sigma_S}{\langle S \rangle} = 0.7\%$$

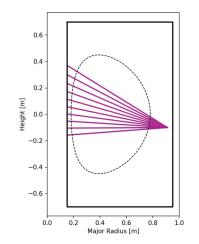
Expected Information Gain vs Number of Sensors

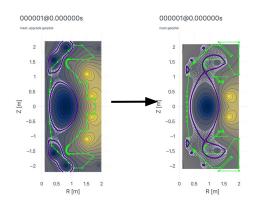




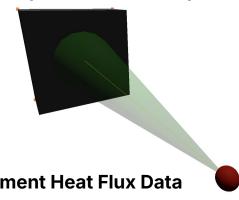
What next?

Multi-diagnostic fusion (TC+IR+bolometry)

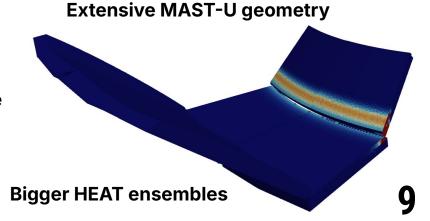




IR camera placement/FOV optimisation



Add Toroidal Ripple



Detachment Heat Flux Data

Thank you for your time.

Michael Battye mike.battye@york.ac.uk

What is BED?

marginal

BED turns sensor placement into an optimisation problem: maximise EIG so the posterior over heat-flux parameters is as tight and decision-useful as possible.

- State your goal (QoI)
 - What do you ultimately care about? (e.g., heat flux width, Gaussian spreading, peak heat flux, or full heat flux profile.
- Choose a design space
 - Ξ : admissible **sensor layouts** ξ (locations, depth, count, wiring limits).
- 3. Specify a prior $p(\theta)$
 - Physics/simulation-informed uncertainty over heat-flux parameters
- Forward model $F(\theta, \xi)$ Maps parameters → temperatures at sensor sites (FEM/FOAM or a GP surrogate).
- Noise model
- $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$ (homoscedastic) or $\mathcal{N}(0, \Sigma_{\epsilon})$ (correlated).
- 6. Likelihood

 $p(y \mid \theta, \xi) = \mathcal{N}(F(\theta, \xi), \Sigma_{\epsilon})$

Predictive (marginal) $p(y|\xi)$: integrate out θ . If using a GP + PCA, this is approximately Gaussian with known μ, Σ .

8. $\mathrm{EIG}(\xi) = \mathbb{E}_{p(\theta) \, p(y \mid \theta, \xi)} \big[\log p(y \mid \theta, \xi) \big] - \mathbb{E}_{p(y \mid \xi)} \big[\log p(y \mid \xi) \big]$

- GP surrogate: compute entropies via log-det and low-rank **updates**; use small joint batches if needed.
- 10. Optimise &

9.

- **Discrete subsets**: GA/beam search with caching; proxy "exact" objective for large sets.
- Continuous placement: gradient-based (SGD/Adam), possibly with variational bounds.
- 11. Pick a design & validate Simulate posterior (or run an end-to-end synthetic

"reconstruction") to verify uncertainty reduction in Qols. Adaptive design

Equations

Forward Model

$$[y=F(\theta,\xi)+\varepsilon, \varepsilon \sim \mathcal{N}(0,\Sigma_{\varepsilon})]$$

$$\underbrace{\theta \sim p(\theta)}_{\text{prior}} \longrightarrow \underbrace{y | \theta, \xi \sim p(y | \theta, \xi)}_{\text{likelihood}}$$

$$\underbrace{p(y|\xi)}_{\text{likelihood}} = \int_{\text{evidence}} p(y|\theta,\xi) p(\theta) d\theta$$

$$\underbrace{p(\theta|y,\xi)}_{\text{posterior}} = \underbrace{\underbrace{\frac{p(y|\theta,\xi)}{\text{likelihood}}\underbrace{\frac{p(\theta)}{\text{prior}}}_{\text{evidence}}}_{\text{evidence}}$$

Bayes' Rule

Gaussian entropy

$$H(\mathcal{N}(\mu, \Sigma)) = \frac{1}{2} \log((2\pi e)^n \det \Sigma)$$

EIG as mutual information (entropy drop)

$$\left[\operatorname{EIG}(\xi) = H(\theta) - \operatorname{E}_{y \sim p(y|\xi)} \left[H(\theta|y,\xi) \right] = H(y|\xi) - \operatorname{E}_{\theta \sim p(\theta)} \left[H(y|\theta,\xi) \right] \right]$$

EIG decomposition

$$EIG(\xi) = \underbrace{\mathbb{E}_{p(\theta)p(y\mid\theta,\xi)}[\log p(y\mid\theta,\xi)]}_{\text{joint}} - \underbrace{\mathbb{E}_{p(y\mid\xi)}[\log p(y\mid\xi)]}_{\text{marginal}}$$

Monte Carlo estimator

$$\widehat{EIG} = \frac{1}{N} \sum_{i=1}^{N} \left[\log p(y^{(i)} \mid \theta^{(i)}, \xi) - \log \left(\frac{1}{M} \sum_{j=1}^{M} p(y^{(i)} \mid \tilde{\theta}^{(j)}, \xi) \right) \right]$$

Dataset mean q_avg: 11.683

Dataset mean q_p95: 59.627

Fractional/relative mean avg_uncertainty_q_avg per number of sensors (relative to dataset mean q_avg value):

1 sensor(s): 0.163 2 sensor(s): 0.015

3 sensor(s): 0.006

4 sensor(s): 0.005

5 sensor(s): 0.005 6 sensor(s): 0.005

7 sensor(s): 0.005 8 sensor(s): 0.005

9 sensor(s): 0.005

Fractional/relative mean avg_uncertainty_q_p95 per number of

sensors (relative to dataset mean q_p95 value):

1 sensor(s): 0.060 2 sensor(s): 0.016

3 sensor(s): 0.007

4 sensor(s): 0.007 5 sensor(s): 0.006

6 sensor(s): 0.006

7 sensor(s): 0.006

8 sensor(s): 0.007 9 sensor(s): 0.006