

Simulation study of the grassy ELM cycles within Edge Plasma Coupling Simulation framework

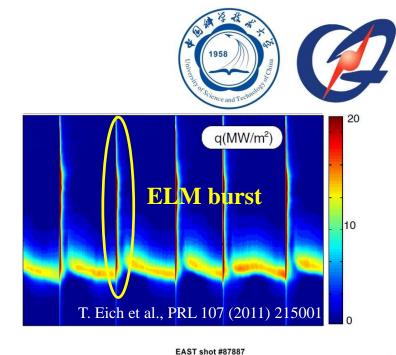
Minyou YE¹, Shifeng MAO¹, Tianyuan LIU¹, Taihao HUANG¹ Tianyang XIA², Qingquan YANG², Xin LIN², Guosheng XU²

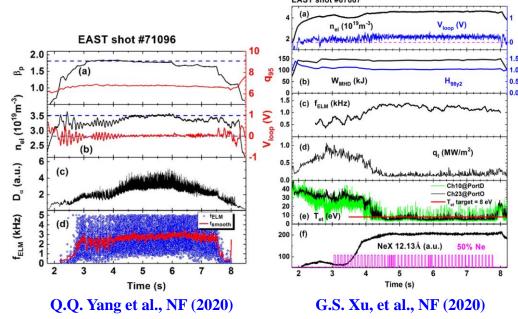
¹University of Science and Technology of China ²Institute of Plasma Physics, CAS

IAEA Headquarters, Vienna, Oct. 31, 2025

Fifth IAEA Technical Meeting on Divertor Concepts

Outline

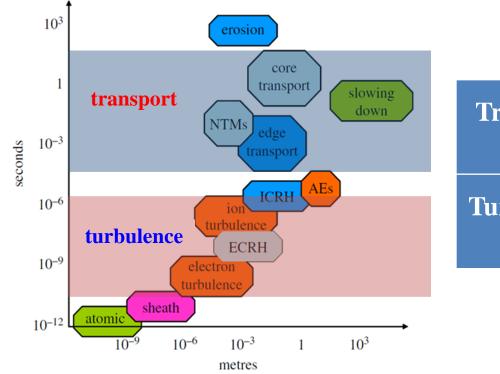




- Motivation
- **Edge plasma coupling simulation framework (EPCS)**
- Time-dependent simulation for grassy ELM cycles
- Impurity seeding: simultaneous detachment/ELM mitigation
- Conclusion

Motivation

- Divertor is subjected to huge heat load, including both the transient heat load due to ELMs and steady-state heat load in between ELMs
- For fusion reactor, steady-state operation requires
 - ➤ High confinement plasma fusion gain
 - > Small/no ELM control the transient heat load
 - **▶** Detachment reduce the (steady-state) heat load
- On EAST tokamak (also AUG, JET, DIII-D...)
 - ➤ High-performance grassy ELM regime accessed
 - ➤ Detachment and small ELM simultaneously achieved by impurity seeding



Motivation

- To investigate the physical mechanism, numerical simulation is necessary
 - > Also improve the ability of **predicting the edge plasma behavior** for future devices
- However, numerical simulation of edge plasma evolution over multi-ELM cycles is difficult due to large gap between turbulence (10⁻⁷ s) and transport (10⁻² s) time scales

Transport codes

Turbulence codes

SOLPS-ITER, EMC3-EIRENE, SOLEDGE2D-EIRENE

BOUT++, JOREK, GBS, SOLEDGE3X, GRILLIX

Motivation

computational complexity

turbulence/transport

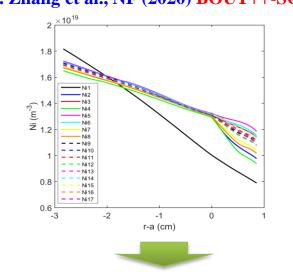
coupling simulation

Turbulence simulation in a long-time scale

A Cathey, et al. PPCF (2022), NF (2020) JOREK

OCE

25

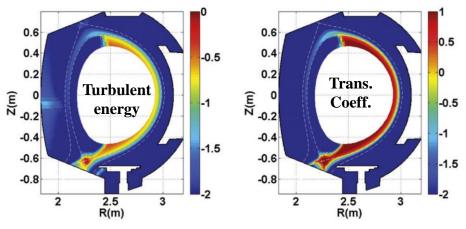

time (ms)

type-I ELM

30

Need artificial source Verified for steady-state simulation

T. D. Rognlien, et al., JNM (2005) BOUT-UEDGE D. R. Zhang et al., NF (2020) BOUT++-SOLPS



Include turbulent trans. coeff. in transport code

Under development

S. Baschetti, et al., NF (2021) SolEdge2D-EIRENE W. Dekeyser, et al., CPP (2022) SOLPS-ITER

Reynolds Averaged Navier-Stokes (RANS)

Develop the multi-scale coupling simulation framework

35

- **✓** Automatic
- **✓** High accuracy
- **✓** High efficiency

Time-dependent simulation of edge plasma evolution over multi-ELM cycles

outer divertor

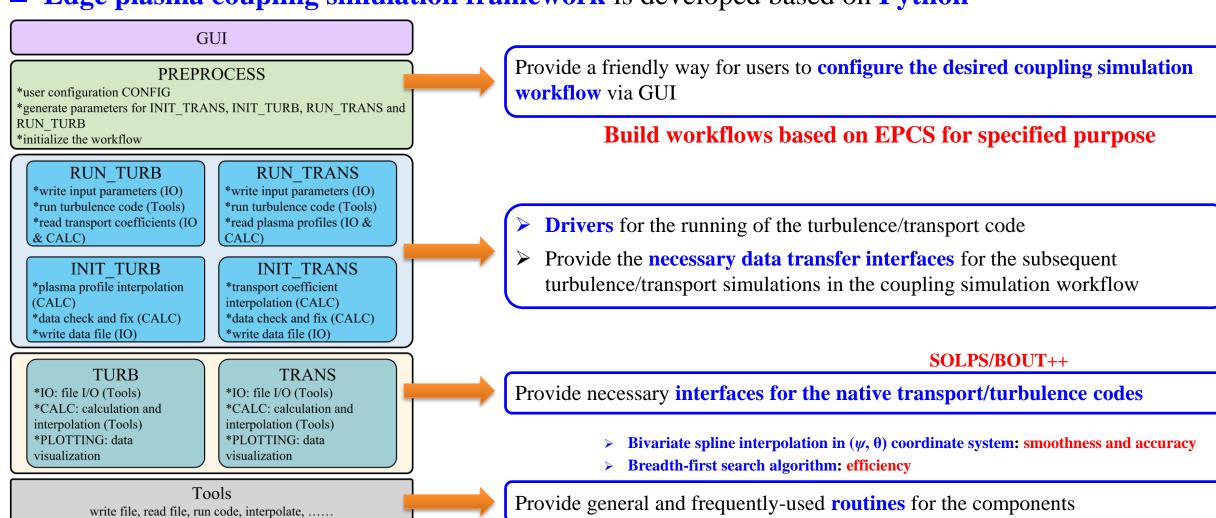
inner divertor

15

20

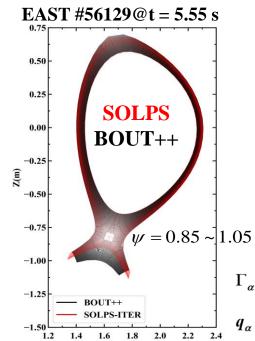
P_{div} (MW)

Outline



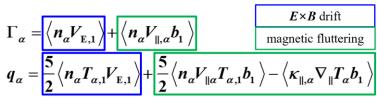
- Motivation
- Edge plasma coupling simulation framework (EPCS)
- **■** Time-dependent simulation for grassy ELM cycles
- Impurity seeding: simultaneous detachment/ELM mitigation
- Conclusion

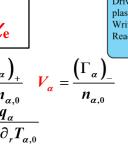
Edge plasma coupling simulation framework is developed based on **Python**



Steady-state coupling simulation workflow

- Initial profiles generated by SOLPS with assumed trans. coeff.
- $D_{i0} = 0.5 \text{ m}^2/\text{s}$ $\chi_{i0} = \chi_{e0} = 1.0 \text{ m}^2/\text{s}$
- **■** Iteration between turbulence/transport codes until converges
- **Test based on ELM-free stage during EAST H-mode discharge**
- > Speeding up the coupling simulation
 - Identify quasi-steady-state of turbulence simulation based on coefficient of variation




SOLPS-ITER (36×64)

- > Include currents and drifts
- ightharpoonup CEI: $n_i = 2.2 \times 10^{19} \text{ m}^{-3}$, $T_i/T_e = 450/320 \text{ eV}$
- \triangleright Evolving n_i , T_i , T_e , J_{\parallel} and ϕ

BOUT++ $(200 \times 64 \times 64)$

- Six-field two-fluid model
- \rightarrow n = 0 components fixed
- \triangleright Provide transport coefficients $D_{\rm i}$, $V_{\rm i}$ and $\chi_{\rm i}/\chi_{\rm e}$

PREPROCESS Read the user configuration file (CONFIG) and generate parameters for INIT_TRANS/TUBB and

for INIT_TRANS/TURB and RUN_TRANS/TURB Read files: b2fgmtry, bout.grd.nc

RUN TRANS

Generate initial plasma profile with assumed transport coefficients Write files: b2mn.dat Read files: b2fstate, b2fplasmf

INIT_TURB Generate the profile-related input file RUN_TURB Drive the turbulence code until CV

is less than given value, and calculate the transport coefficients Write files: BOUT.inp
Read files: BOUT.dump.*.nc

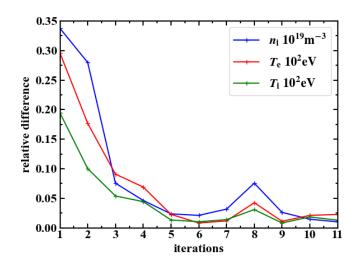
Profiles of n_i , T_i , T_e , J_{\parallel} , ϕ

by interpolation (TURB)

Write files: bout.grd.nc

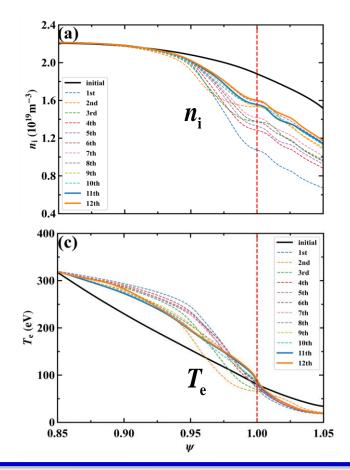
RUN_TRANS

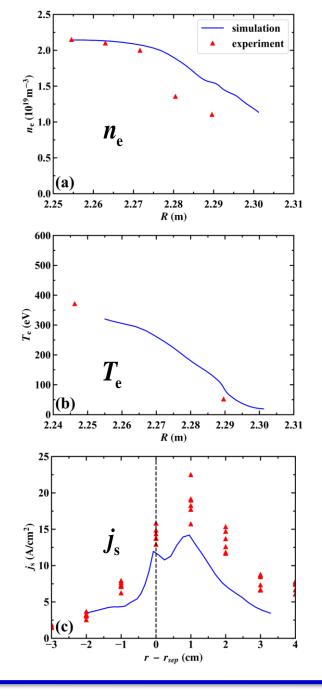
Drive the transport code and get the plasma profiles Write files: b2mn.dat Read files: b2fstate, b2fplasmf INIT_TRANS
Generate the input file of 2D transport coefficients by


interpolation (TRANS) Write files: b2.transport2d.inputfile

END

quit the iteration loop if the relative difference of plasma profiles are less than a given value Profiles of D_i , V_r , χ_i , χ_e

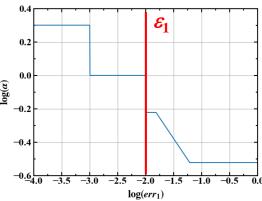

Steady-state coupling simulation workflow


- As expected, plasma profiles converge along with iterations
- Profiles at OMP and target in good agreement with experiment

Relative differences of plasma profiles between *m* and *m*-1 iteration

$$diff\left(PP^{m}\right) \equiv \frac{\sum_{i=0}^{N_{x}-1} \sum_{j=0}^{N_{y}-1} \left| PP_{i,j}^{m} - PP_{i,j}^{m-1} \right|}{\sum_{i=0}^{N_{x}-1} \sum_{j=0}^{N_{y}-1} \left| PP_{i,j}^{m} \right|}$$

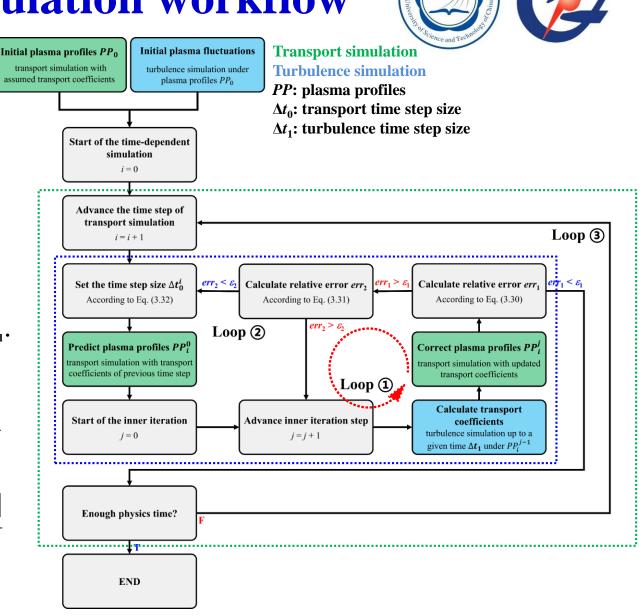
Outline



- Motivation
- **Edge plasma coupling simulation framework (EPCS)**
- Time-dependent simulation for grassy ELM cycles
- Impurity seeding: simultaneous detachment/ELM mitigation
- Conclusion

Time-dependent coupling simulation workflow

- **Loop1:** inner iteration
 - ✓ Ensure the **self-consistence** between the evolution of plasma profiles and the turbulence transport flux based on the **predictor-corrector method**
- **Loop2:** adaptive change of time step
 - ✓ **ELM burst**: decrease time step size to ensure accuracy
 - ✓ **Recovery**: increase time step size to improve efficiency



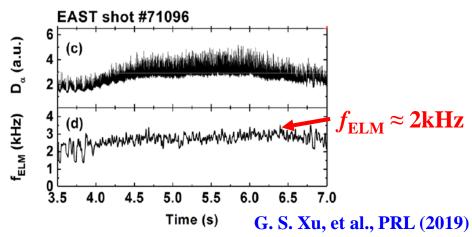
change ratio of the time step size $\Delta t_{0,\text{new}}^i = \left(\frac{\varepsilon_1}{err}\right)^{\frac{1}{k+1}} \Delta t_{0,\text{old}}^i = \alpha \left(\frac{\varepsilon_1}{err}\right) \Delta t_{0,\text{old}}^i$.

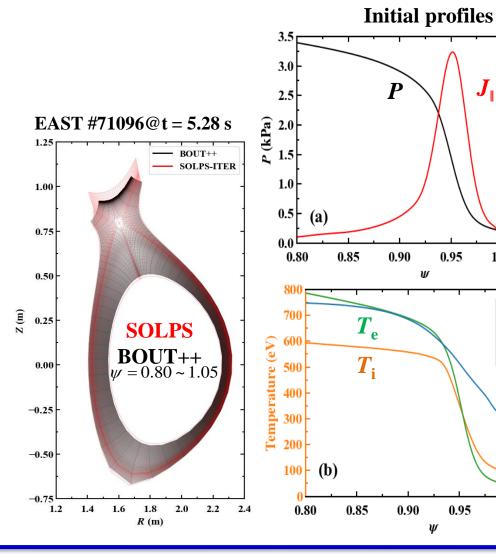
error $err_{1}(PP_{i}^{j}) = \frac{\sum_{ix=0}^{nx-1} \sum_{iy=0}^{ny-1} \left| PP_{i,ix,iy}^{j} - PP_{i,ix,iy}^{0} \right|}{\sum_{ix=0}^{nx-1} \sum_{iy=0}^{ny-1} PP_{i,ix,iy}^{j}}$ **Relative error**

$$err_{2}(PP_{i}^{j}) = \frac{\sum_{ix=0}^{nx-1} \sum_{iy=0}^{ny-1} |PP_{i,ix,iy}^{j} - PP_{i,ix,iy}^{j-1}|}{\sum_{ix=0}^{nx-1} \sum_{iy=0}^{ny-1} PP_{i,ix,iy}^{j}}$$

Loop3: advance physics time step

Simulation setup



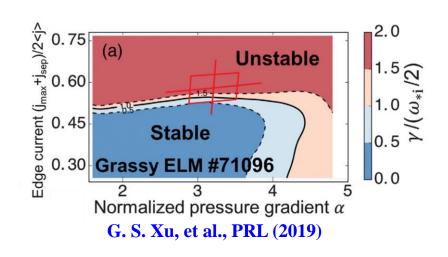


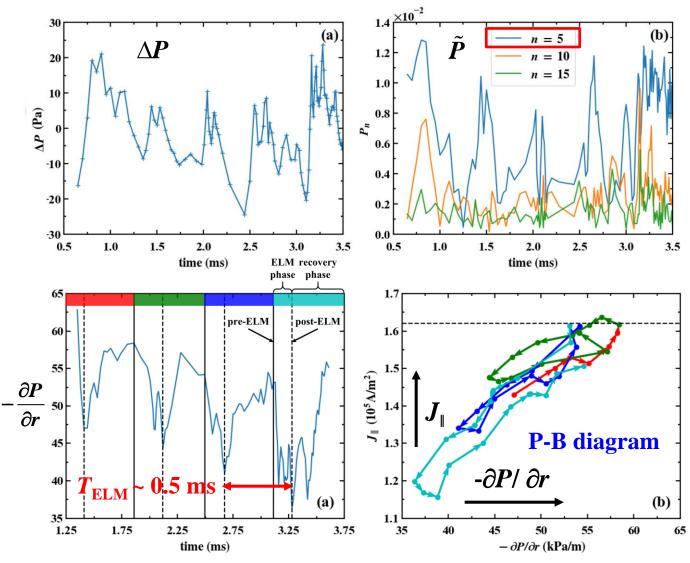
1.00

1.05

- Based on **EAST grassy ELM experiment** (#71096)
 - **SOLPS-ITER** (36×64)
 - ightharpoonup CEI: $n_i = 1.5 \times 10^{19} \text{ m}^{-3}$, $P_{SOL} = 1.6 \text{ MW}$
 - ➤ Include currents and drifts, time-dependent
 - $ightharpoonup \Delta t_0$: adaptive ($\Delta t_{\text{SOLPS}} = 1 \times 10^{-6} \text{ s}$)
 - \triangleright Evolving n_i , T_i , T_e , J_{\parallel} and ϕ
 - BOUT++ $(200 \times 64 \times 64)$
 - \triangleright Six-field two-fluid model, n = 0 components fixed
 - $ightharpoonup \Delta t_1 = 20 \ \tau_A \ (\Delta t_{BOUT++} = 1 \ \tau_A)$
 - \triangleright Provide transport coefficients D_i , V_i and χ_i/χ_e

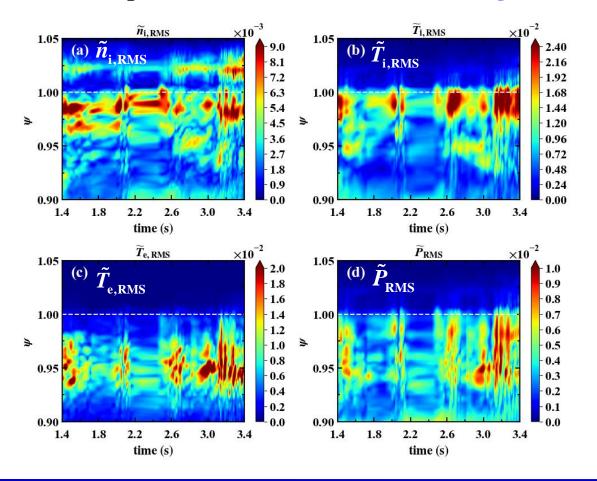
1.05

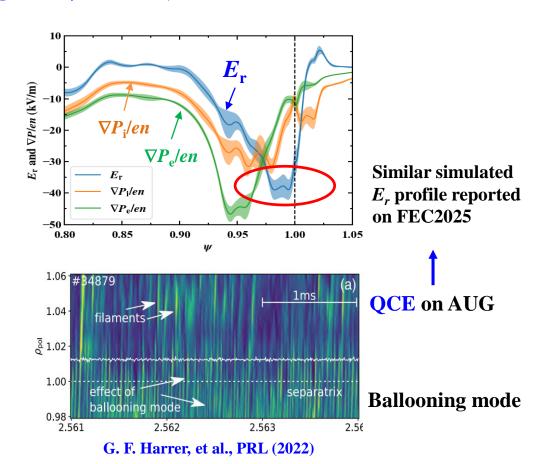

1.00


0.08

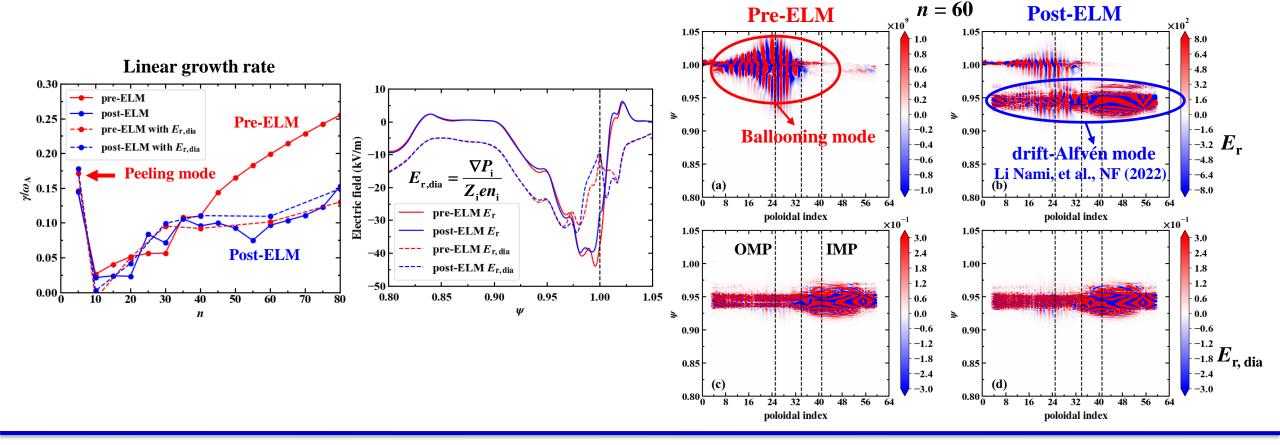
ELM cycles

- Quasi-periodical rise and fall of pressure appears at **pedestal foot** ($\psi \approx 0.98 \sim 1.00$)
- ELM frequency ~ 2 kHz consistent with experiment
- Counter-clockwise trajectory on the P-B diagram
 - Cross the peeling boundary
 - In agreement with the linear simulation




Radial distribution of fluctuations

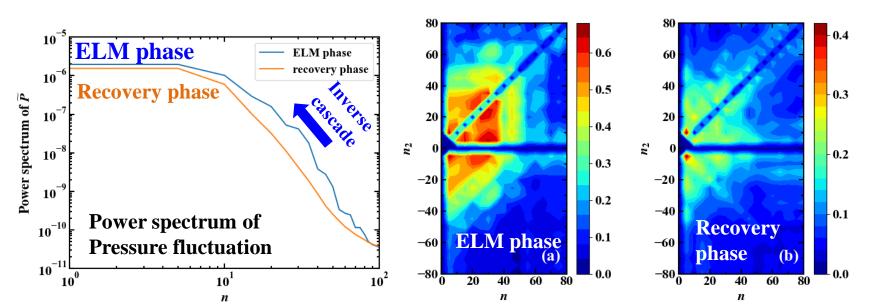
- Density and ion temperature fluctuations locate at **pedestal foot** ($\psi \approx 0.99$)
- Electron temperature fluctuations locates at gradient region ($\psi \approx 0.95$)



Physical mechanism: linear growth rate

- Comparing linear growth rate under profiles pre- and post-ELM
 - n = 5 peeling mode most unstable (agree with the analysis in G. S. Xu, et al., PRL (2019))
 - \triangleright Periodical change for high *n* ballooning modes (50-80) with simulated E_r

Physical mechanism: nonlinear interaction


- However, while the linear growth rate almost unaffected, strength of n = 5 mode periodically evolves
- \blacksquare The strength of **nonlinear interaction between low and high** n **modes**:
 - > Amplitude of low *n* mode increases in ELM phase
 - Strong interaction during ELM phase

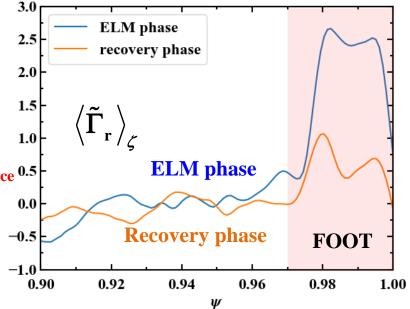
Low *n* mode driven by nonlinear interaction: inverse cascade

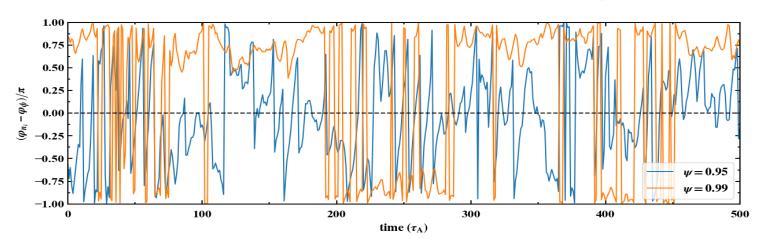
$$\frac{\partial}{\partial t} P_n(t) = \sum_{n_1 \geq n_2, \atop n_1 + n_2 = n} \Lambda_n(n_1, n_2) P_{n_1}(t) P_{n_2}(t) + \text{dissipation,}$$
Linear growth $n_1 + n_2 = n$ Nonlinear interaction

Ch. Ritz, et al., Phys. Fluids (1989) S. Chai, Y. Xu*, et al., PoP (2017)

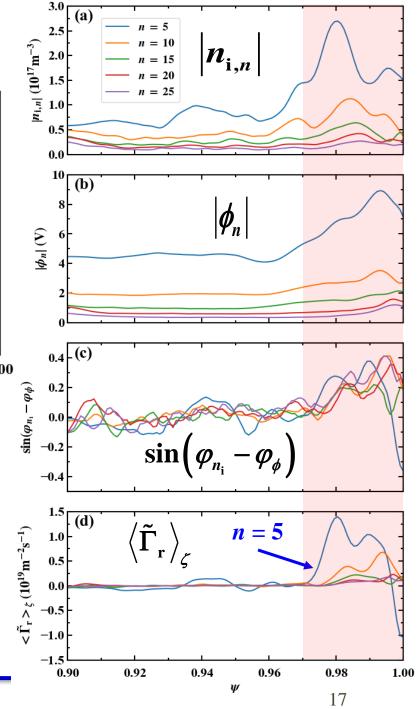
bispectrum

$$\hat{b}_{XYZ}^{2}\left(n_{1},n_{2}\right) = \frac{\left|\hat{B}_{XYZ}\left(n_{1},n_{2}\right)\right|^{2}}{\left|X\left(n_{1}\right)Y\left(n_{2}\right)\right|^{2}\left|Z\left(n_{1}+n_{2}\right)\right|^{2}}$$

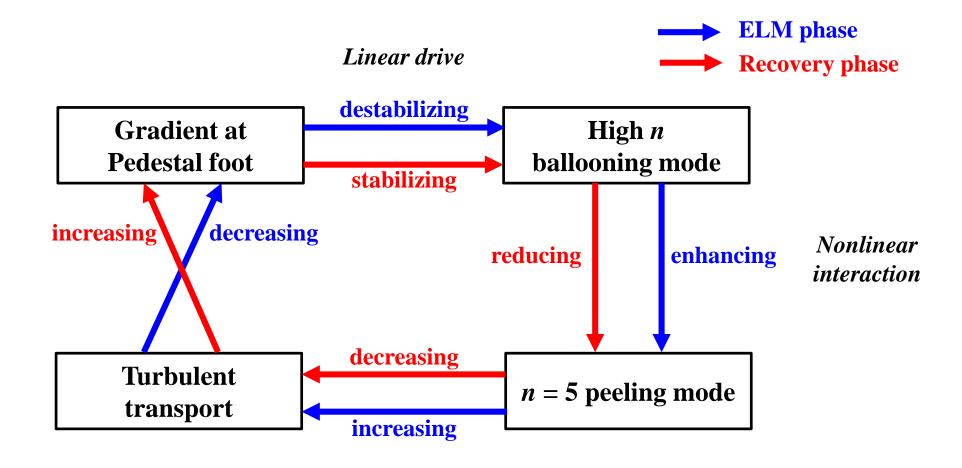

$$\hat{B}_{XYZ}(n_1,n_2) = X(n_1)Y(n_2)Z^*(n_1+n_2)$$


Radial particle transport

- \triangleright Dominated by n = 5 mode
- > Strong particle transport at pedestal foot: important for maintaining low density gradient


Radial particle flux density fluc. Potential fluc. Phase difference 0.5

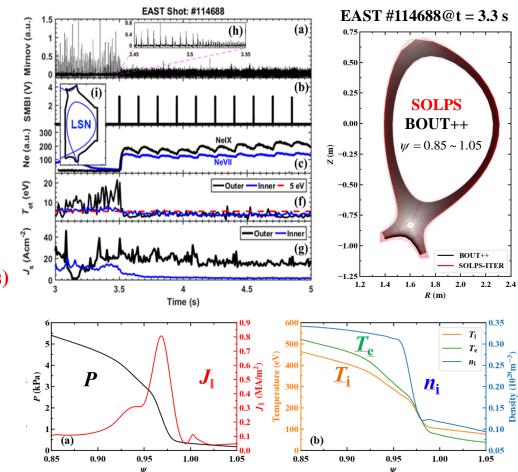
$$\left\langle \tilde{\Gamma}_{\rm r} \right\rangle_{\zeta} \approx \frac{2}{RB_{\rm n}} \sum_{n>0} n \left| n_{\rm i,n} \right| \phi_n \sin \left(\varphi_{n_{\rm i}} - \varphi_{\phi} \right)$$


Weak E×B shear at pedestal foot facilitates turbulence transport

Physical mechanism: grassy ELM cycle

Outline

- Motivation
- **Edge plasma coupling simulation framework (EPCS)**
- Time-dependent simulation for grassy ELM cycles
- Impurity seeding: simultaneous detachment/ELM mitigation
- Conclusion

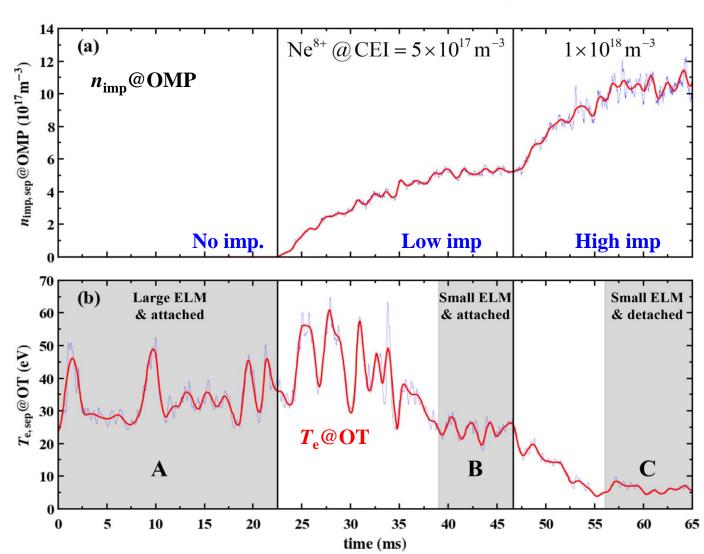

Simulation setup

- Simultaneous detachment and ELM mitigation achieved in EAST experiment with Ne injection
- To qualitatively simulate the edge plasma profile evolution after impurity seeding
 - **SOLPS-ITER** (36×64)
 - ightharpoonup CEI: $n_i = 3.4 \times 10^{19} \, \text{m}^{-3}$, $P_{\text{SOL}} = 3 \, \text{MW}$
 - ➤ Include currents and drifts, time-dependent
 - ➤ Impurity seeding with fixed Ne⁸⁺ density at CEI
 - \triangleright Evolving n_i , T_i , T_e , J_{\parallel} and ϕ
 - BOUT++ $(200 \times 64 \times 64)$
 - \triangleright Six-field two-fluid model, n = 0 components fixed
 - ➤ Including impurity effect via vorticity (only Ne⁸⁺)
 - \triangleright Transport coefficients D_i , V_i and χ_i/χ_e (same for impurities)

$$\boldsymbol{\varpi} = \frac{n_{i}m_{i}}{B_{0}} \left(\nabla_{\perp}^{2} \phi + \frac{1}{Z_{i}en_{i}} \nabla_{\perp}^{2} P_{i} + \frac{1}{n_{i}} \nabla_{\perp} n_{i} \cdot \nabla_{\perp} \phi \right) + \frac{n_{imp}m_{imp}}{B_{0}} \left(\nabla_{\perp}^{2} \phi + \frac{1}{Z_{imp}en_{imp}} \nabla_{\perp}^{2} P_{imp} + \frac{1}{n_{imp}} \nabla_{\perp} n_{imp} \cdot \nabla_{\perp} \phi \right)$$

Simulation results

Phase A: Large ELMs / attached

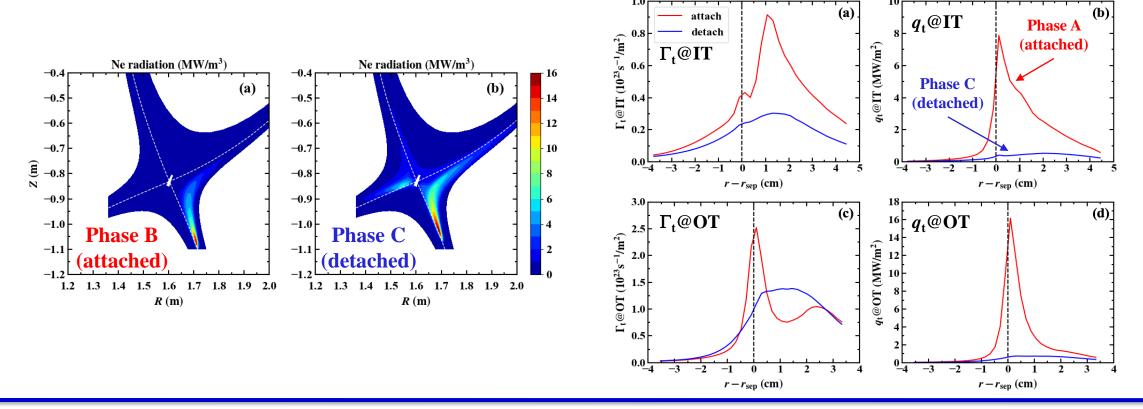

- No impurity
- \triangleright Rapid increase of $T_{\text{e.OT}}$ due to large ELM
- ➤ Maximum $T_{\rm e}$ at SP on OT ≈ 50 eV

■ Phase B: small ELMs / attached

- ightharpoonup Ne⁸⁺ density at CEI: 5×10^{17} m⁻³
- \triangleright Dramatic decrease of $T_{\rm e}$ fluctuation
- ➤ Average $T_{\rm e}$ at SP on OT \approx 25 eV

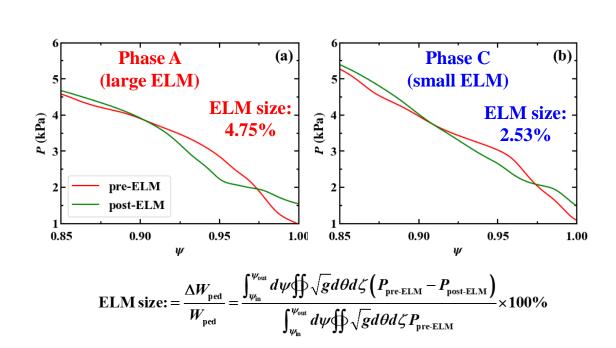
■ Phase C: small ELMs / detached

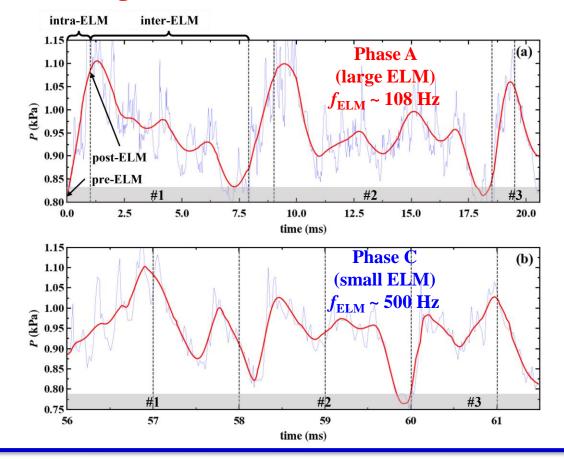
- ightharpoonup Ne⁸⁺ density at CEI: 1×10^{18} m⁻³
- \succ $T_{\rm e}$ fluctuation almost vanishes
- ➤ Average $T_{\rm e}$ at SP on OT \approx 5 eV


Divertor plasma: attached → detached

- Both inner and outer divertor achieve energy detachment, higher particle detachment level for inner target
 Qualitatively consistent with experiment

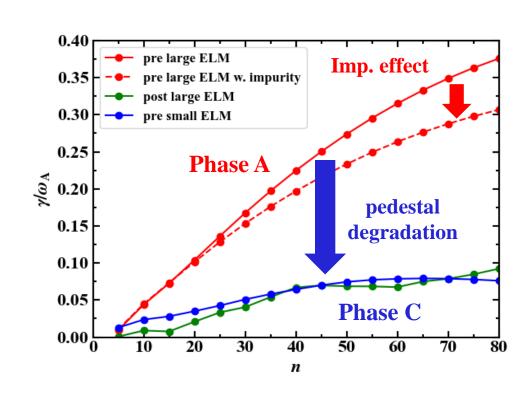
 A. Leonard, PPCF 2018
- When approaching detachment, radiation region moves from outer target toward X point
- Total radiation power 2.39 MW ($80\% P_{SOL}$), 0.68 MW from core region (28% radiation fraction)

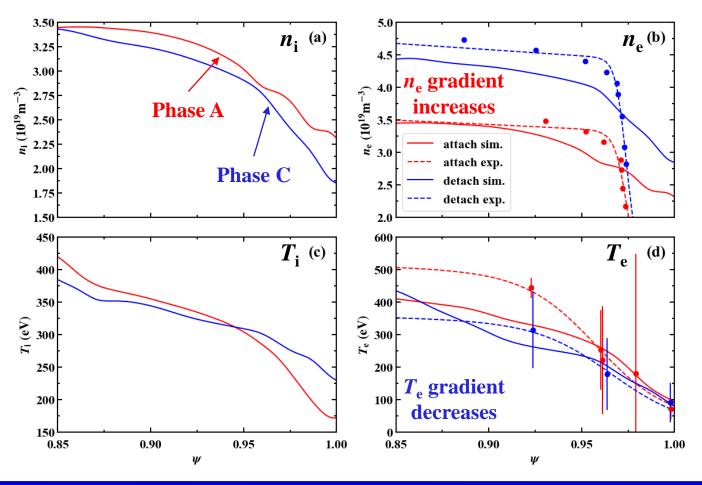



ELM size: large → small

- Distinct recovery phase following ELM burst for large ELM (phase A): $f_{\text{ELM}} \sim 108 \text{ Hz}$ (Exp. $\sim 200 \text{ Hz}$)
- Quasi-continuous exhaust feature for small ELM (phase C): $f_{ELM} \sim 500$ Hz (consistent with Exp.)
- ELM size of small ELM (2.53%) is about half of that for large ELM (4.75%)

ELM mitigation: degradation of pedestal profiles





- Degradation of pedestal profile after impurity seeding: suppress pedestal instabilities
- **Impurity** itself also has **stabilization effect**

S.F. Mao, Poster in this meeting #17

Outline

- Motivation
- **Edge plasma coupling simulation framework (EPCS)**
- **■** Time-dependent simulation for grassy ELM cycles
- Impurity seeding: simultaneous detachment/ELM mitigation
- **■** Conclusion

Conclusion

- **EPCS framework** is developed for research of physics mechanism behind ELM/detachment control and prediction of edge plasma behavior in future device
- Simulations are performed based on EAST experiments
 - > Grassy ELM:
 - ➤ ELM frequency ~ 2 kHz and counter-clockwise trajectory in P-B diagram: consistent with experiment
 - \triangleright At pedestal foot: high *n* ballooning mode \rightarrow nonlinearly enhancing peeling mode \rightarrow ELM burst
 - > Strong turbulent particle transport at pedestal foot: facilitates maintaining of low density gradient
 - > Simultaneous detachment and ELM mitigation by neon impurity injection:
 - ➤ After impurity seeding, large ELM→small ELM and attachment → energy detachment
 - > ELM mitigation mainly due to the degradation of pedestal profile after impurity seeding
- Next step:
 - Validation (and investigation) for more experiments and devices. Welcome collaboration!
 - > Development with more physics model (e.g. micro-turbulence)
 - Simulation for reactor level devices (prediction)

<u>yemy@ustc.edu.cn</u> <u>sfmao@ustc.edu.cn</u>

Thanks for your attention!