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Motivation

◼ Divertor is subjected to huge heat load, including 

both the transient heat load due to ELMs and 

steady-state heat load in between ELMs

◼ For fusion reactor, steady-state operation requires

➢High confinement plasma – fusion gain

➢ Small/no ELM – control the transient heat load

➢ Detachment – reduce the (steady-state) heat load

◼ On EAST tokamak (also AUG, JET, DIII-D…)

➢High-performance grassy ELM regime accessed

➢ Detachment and small ELM simultaneously

achieved by impurity seeding

ELM burst

T. Eich et al., PRL 107 (2011) 215001
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Q.Q. Yang et al., NF (2020) G.S. Xu, et al., NF (2020) 



Motivation

◼ To investigate the physical mechanism, numerical simulation is necessary

➢ Also improve the ability of predicting the edge plasma behavior for future devices

◼ However, numerical simulation of edge plasma evolution over multi-ELM cycles is 

difficult due to large gap between turbulence (10-7 s) and transport (10-2 s) time scales
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Transport 

codes

SOLPS-ITER、EMC3-EIRENE、
SOLEDGE2D-EIRENE

Turbulence 

codes

BOUT++、JOREK、GBS、
SOLEDGE3X、GRILLIX

transport

turbulence
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Turbulence simulation 

in a long-time scale

turbulence/transport 

coupling simulation

Include turbulent trans. 

coeff. in transport code

computational complexity

Under developmentNeed artificial source Verified for steady-state simulation

A Cathey, et al. PPCF (2022), NF (2020) JOREK

QCE

type-I ELM

T. D. Rognlien, et al., JNM (2005) BOUT-UEDGE

D. R. Zhang et al., NF (2020) BOUT++-SOLPS

S. Baschetti, et al., NF (2021) SolEdge2D-EIRENE

W. Dekeyser, et al., CPP (2022) SOLPS-ITER

Reynolds Averaged Navier–Stokes (RANS)

Turbulent 

energy

Trans.

Coeff.

Develop the multi-scale coupling 

simulation framework

✓ Automatic

✓ High accuracy

✓ High efficiency

Time-dependent simulation 

of edge plasma evolution 

over multi-ELM cycles
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EPCS framework

◼ Edge plasma coupling simulation framework is developed based on Python

2025/10/31, Vienna Simulation study of the grassy ELM cycles within EPCS framework 7

Liu et al. PPCF 67 (2025) 55004

Provide necessary interfaces for the native transport/turbulence codes

SOLPS/BOUT++

Provide general and frequently-used routines for the components 

➢ Drivers for the running of the turbulence/transport code

➢ Provide the necessary data transfer interfaces for the subsequent 

turbulence/transport simulations in the coupling simulation workflow

Provide a friendly way for users to configure the desired coupling simulation 

workflow via GUI

Build workflows based on EPCS for specified purpose

➢ Bivariate spline interpolation in (ψ, θ) coordinate system: smoothness and accuracy

➢ Breadth-first search algorithm: efficiency



Steady-state coupling simulation workflow

◼ Initial profiles generated by SOLPS with assumed trans. coeff.

◼ Iteration between turbulence/transport codes until converges

◼ Test based on ELM-free stage during EAST H-mode discharge

➢ Speeding up the coupling simulation

➢ Identify quasi-steady-state of turbulence simulation based on coefficient of variation
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0.85 ~ 1.05 =

SOLPS

BOUT++

EAST #56129@t = 5.55 s

Di0 = 0.5 m2/s

i0 = e0 = 1.0 m2/s

SOLPS-ITER (36×64)
➢ Include currents and drifts

➢ CEI: ni = 2.2  1019 m-3, Ti/Te = 450/320 eV

➢ Evolving ni , Ti , Te, J‖ and 

BOUT++ (200×64×64)
➢ Six-field two-fluid model

➢ n = 0 components fixed

➢ Provide transport coefficients Di , Vi and i/e



Steady-state coupling simulation workflow
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◼ As expected, plasma profiles converge along with iterations

◼ Profiles at OMP and target in good agreement with experiment

Relative differences of plasma profiles 

between m and m-1 iteration
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Time-dependent coupling simulation workflow

◼ Loop1: inner iteration

✓ Ensure the self-consistence between the evolution of 

plasma profiles and the turbulence transport flux based 

on the predictor-corrector method

◼ Loop2: adaptive change of time step

✓ ELM burst: decrease time step size to ensure accuracy

✓ Recovery: increase time step size to improve efficiency

◼ Loop3: advance physics time step
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Transport simulation

Turbulence simulation

PP: plasma profiles

Δt0: transport time step size

Δt1: turbulence time step size
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Simulation setup

◼ Based on EAST grassy ELM experiment (#71096)

⚫ SOLPS-ITER (36×64)

➢ CEI: ni = 1.5  1019 m-3, PSOL = 1.6 MW

➢ Include currents and drifts, time-dependent

➢ t0: adaptive (tSOLPS = 1  10-6 s)

➢ Evolving ni , Ti , Te, J‖ and 

⚫ BOUT++ (200×64×64)

➢ Six-field two-fluid model, n = 0 components fixed

➢ t1 = 20 A (tBOUT++ = 1 A)

➢ Provide transport coefficients Di , Vi and i/e

2025/10/31, Vienna Simulation study of the grassy ELM cycles within EPCS framework 12

EAST #71096@t = 5.28 s

0.80 ~ 1.05 =

SOLPS

BOUT++

Initial profiles

J‖P

Te

Ti

ni

fELM ≈ 2kHz

G. S. Xu, et al., PRL (2019)



ELM cycles

◼ Quasi-periodical rise and fall of pressure 

appears at pedestal foot (ψ ≈ 0.98 ~ 1.00)

◼ ELM frequency ~ 2 kHz – consistent with 

experiment

◼ Counter-clockwise trajectory on the P-B 

diagram

⚫ Cross the peeling boundary

⚫ In agreement with the linear simulation
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TELM ~ 0.5 ms

P-B diagram
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G. S. Xu, et al., PRL (2019)



Radial distribution of fluctuations

◼ Density and ion temperature fluctuations locate at pedestal foot (ψ ≈ 0.99)

◼ Electron temperature fluctuations locates at gradient region (ψ ≈ 0.95)
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T RMS

P

Er

Pi/en

Pe/en

G. F. Harrer, et al., PRL (2022) 

QCE on AUG

Ballooning mode

Similar simulated 

Er profile reported 

on FEC2025



Physical mechanism: linear growth rate

◼ Comparing linear growth rate under profiles pre- and post-ELM

➢ n = 5 peeling mode most unstable (agree with the analysis in G. S. Xu, et al., PRL (2019))

➢ Periodical change for high n ballooning modes (50-80) with simulated Er
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Linear growth rate
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Li Nami, et al., NF (2022)
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Physical mechanism: nonlinear interaction

◼ However, while the linear growth rate almost unaffected, strength of n = 5 mode periodically evolves

◼ The strength of nonlinear interaction between low and high n modes:

➢ Amplitude of low n mode increases in ELM phase

➢ Strong interaction during ELM phase
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Low n mode driven by nonlinear interaction: 

inverse cascade
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Radial particle transport

Phase differencedensity fluc. Potential fluc.Radial particle flux
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Physical mechanism: grassy ELM cycle
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Simulation setup

◼ Simultaneous detachment and ELM mitigation achieved in EAST experiment with Ne injection

◼ To qualitatively simulate the edge plasma profile evolution after impurity seeding

⚫ SOLPS-ITER (36×64)

➢ CEI: ni = 3.4  1019 m-3, PSOL = 3 MW

➢ Include currents and drifts, time-dependent

➢ Impurity seeding with fixed Ne8+ density at CEI

➢ Evolving ni , Ti , Te, J‖ and 

⚫ BOUT++ (200×64×64)

➢ Six-field two-fluid model, n = 0 components fixed

➢ Including impurity effect via vorticity (only Ne8+)

➢ Transport coefficients Di , Vi and i/e (same for impurities)
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Simulation results

◼ Phase A: Large ELMs / attached

➢ No impurity

➢ Rapid increase of Te,OT due to large ELM

➢ Maximum Te at SP on OT ≈ 50 eV

◼ Phase B: small ELMs / attached

➢ Ne8+ density at CEI: 51017 m-3

➢ Dramatic decrease of Te fluctuation

➢ Average Te at SP on OT ≈ 25 eV

◼ Phase C: small ELMs / detached

➢ Ne8+ density at CEI: 11018 m-3

➢ Te fluctuation almost vanishes

➢ Average Te at SP on OT ≈ 5 eV
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nimp@OMP

Te@OT

No imp. Low imp High imp



Divertor plasma: attached        detached 

◼ Both inner and outer divertor achieve energy detachment, higher particle detachment level for inner target 

➢ Qualitatively consistent with experiment

◼ When approaching detachment, radiation region moves from outer target toward X point

◼ Total radiation power 2.39 MW (80% PSOL), 0.68 MW from core region (28% radiation fraction) 
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Phase B 

(attached)

Phase C 

(detached)

t@IT

t@OT

qt@IT

qt@OT

Phase A 

(attached)

Phase C 

(detached)

A. Leonard, PPCF 2018



ELM size: large          small
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◼ Distinct recovery phase following ELM burst for large ELM (phase A): fELM ~ 108 Hz (Exp. ~ 200 Hz)

◼ Quasi-continuous exhaust feature for small ELM (phase C): fELM ~ 500 Hz (consistent with Exp.)

◼ ELM size of small ELM (2.53%) is about half of that for large ELM (4.75%)

Phase A 

(large ELM)

ELM size: 

4.75%

Phase C 

(small ELM)

ELM size: 

2.53%

Phase A 

(large ELM)

fELM ~ 108 Hz

Phase C 

(small ELM)

fELM ~ 500 Hz



ELM mitigation: degradation of pedestal profiles
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◼ Degradation of pedestal profile after impurity seeding: suppress pedestal instabilities

◼ Impurity itself also has stabilization effect              S.F. Mao, Poster in this meeting #17

Phase C

Phase A

Imp. effect

pedestal 

degradation

ni

Ti Te

ne

Phase A
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ne gradient 

increases

Te gradient 

decreases 
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Conclusion

◼ EPCS framework is developed for research of physics mechanism behind ELM/detachment 

control and prediction of edge plasma behavior in future device

◼ Simulations are performed based on EAST experiments

➢ Grassy ELM:

➢ ELM frequency ~ 2 kHz and counter-clockwise trajectory in P-B diagram: consistent with experiment

➢ At pedestal foot: high n ballooning mode      nonlinearly enhancing peeling mode      ELM burst

➢ Strong turbulent particle transport at pedestal foot: facilitates maintaining of low density gradient

➢ Simultaneous detachment and ELM mitigation by neon impurity injection:

➢ After impurity seeding, large ELM small ELM and attachment energy detachment

➢ ELM mitigation mainly due to the degradation of pedestal profile after impurity seeding

◼ Next step:

➢ Validation (and investigation) for more experiments and devices. Welcome collaboration!

➢ Development with more physics model (e.g. micro-turbulence)

➢ Simulation for reactor level devices (prediction)
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Thanks for your attention!
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