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FusionDirect Stellarator Commercialization Program

2018 2023 2025 2027 2028 2029-2035

Enablers Ready
1st De-risking 

Milestones

Design 
Complete 

and Verified

A direct path to contracting the first Fusion Power Plant project 
before 2030

Fusion Power Plant (FPP) development and design
Project Infinity: Validate FPP design by test on integrated prototype (Infinity One)

FPP Deployment

Program Launch
2nd De-risking 

Milestones

Infinity One Operation
Fusion Power Plant development and design
Project Infinity: validate FPP design by test on integrated prototype (Infinity One)
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Infinity Two Physics Basis

“ Physics Basis of the Infinity Two Fusion Power Plant”, Journal of Plasma Physics, v. 91 Issue 3 (2025)
Six scientific papers and one editorial paper, peer reviewed and open-access on JPP website

As published:
4-period, B=9 T, 

R=12,5 m

New configuration:
3-period, B=8 T, R=11.4 m 

Meets or exceeds all metrics of 
the published configuration

→ Six months later →
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Infinity Two Divertor Requirements for Good Plasma Performance 

• Divertor heat and particle fluxes: reduced enough to maintain divertor integrity 

→ Below engineering and sputtering limit (qmax<5 MW/m2)

→ W7-X could demonstrate stable plasmas at high radiative fraction and low target heat flux

• Neutral pressure in the divertor: exhaust of main species and impurity particles – plenum pressure 
~ 1 Pa  

→ Achieving good W7-X particle exhaust was a challenge 

• Neutral compression: ratio of  downstream neutral pressures to upstream values: ratio as high as 
possible

• Radiative fraction: ratio of radiated power to input power: high with most being located at island 
SOL 

→ understand detachment physics and stability 

• Core plasma parameters: core plasma should be stable during detachment; performance 
maintained  
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Understanding Island 
Divertor Physics
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Island divertors selected for power and particle exhaust

• W7-AS and W7-X :  wealth of data and knowledge available

• Role of perpendicular transport in IDs much larger than 
tokamaks → sets the target scrape-off layer width (𝜆𝑞𝑡)

• Understanding sensitivity of 𝜆𝑞𝑡 on  𝜒, 𝐷, 𝐿𝑐 and other 
important factors like magnetic field  

Field lines inside the island intersect divertor 
target plates

Ref: Jakubowski, M., et al. Nuclear Fusion 61.10 (2021): 106003. DOI: 10.1088/1741-
4326/ac1b68. Reproduced under Creative Commons Attribution 4.0 licence.
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Divertors
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Island divertors selected for power and particle exhaust

• W7-AS and W7-X :  wealth of data and knowledge available

• Role of perpendicular transport in IDs much larger than 
tokamaks → sets the target scrape-off layer width (𝜆𝑞𝑡)

• Understanding sensitivity of 𝜆𝑞𝑡 on  𝜒, 𝐷, 𝐿𝑐 and other 
important factors like magnetic field  

Cartoon of field lines inside the island intersect 
divertor target plates
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Scrape-off Layer (SOL) features that differentiates stellarators with tokamaks

• Momentum loss in stellarators : Counterflows residing on 
neighboring island fans   

𝒑𝒖 = 𝟐𝒑𝒅( 𝟏 + 𝒇𝒎) where 𝒇𝒎 = 𝜶/𝑻𝒅𝟎. 𝟓

• Downstream density lower than the upstream density    
→ Neutral pumping a challenge in IDs

• In stellarators, large part of the SOL periphery facing the 
wall lies ‘downstream’ and protects the wall from direct 
exposure to the hot ‘upstream’ plasma                                   
→ Better impurity retention in IDs 

Comparison of divertor transport behaviour in W7-
AS, W7-X and ASDEX Upgrade calculated by EMC3-

EIRENE.

Ref: Feng, Y., et al. PPCF 53.2 (2011): 02400. DOI: 10.1088/0741-3335/53/2/024009. 
© Institute of Physics, 2011.
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Different Divertor Concepts 
Explored for Particle and 

Power Exhaust
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Exploring Open and Closed Divertor Concepts for Exhaust (in 2D)  

Backside DivertorClassical Divertor

Target 

Wall

Dome

Wall

Support

Baffles

12PROPRIETARY – DO NOT COPY OR DISTRIBUTE



Exploring Open and Closed Divertor Concepts for Exhaust (in 2D with Connection 
lengths plot ) 

Classical Divertor

• Design is similar to W7-X 
divertor

• Targets inclined at 3 deg to the 
magnetic field

• Neutral pumping could be 
challenging due to inefficient 
neutral retention 

• Optimization of target shape 
ongoing for better heat load 
distribution and pumping 
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Exploring Open and Closed Divertor Concepts for Exhaust (in 2D with Connection lengths 
plot )  

Backside Divertor

• Promises improved neutral 
pumping

• Closing the divertor using 
baffles and with a structure 
inside the island (dome) 

• Prevents neutralized plasma 
particles from re-entering the 
plasma
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Exploring Open and Closed Divertor Concepts for Exhaust (in 3D)  

Backside DivertorClassical Divertor

Target 

Dome 

Support 

Vessel Wall 
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Analysis tools used for Heat 
and Particle load estimation 
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General workflow: Reduced fidelity model for divertors optimization and high-fidelity 
model for in-depth divertor physics analysis

FLARE EMC3- EIRENE

• High-fidelity 
• Large computational resources 

required
• Monte-Carlo fluid model for 

steady state plasma coupled 
with kinetic model for neutrals

• Provides data on density, 
temperature, target heat and 
particle loads, neutral pumping 
etc.

Coils and MHD team 
provides equilibrium

If heat-load 
distribution 
good enough  

Divertor design  
shared with Engg. 
team

• Low-fidelity 
• Needs less computational 

resources 
• Very quick used for initial 

tweaking/optimization  of 
divertor geometry   

• Diffusion model used for 
heat and particle load 
estimates 
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Analysis of Divertor SOL 
properties for Infinity Two
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Plasma density comparison using EMC3-EIRENE for both divertor concepts

Backside Divertor Classical Divertor

• EMC3- EIRENE calculations performed with nIBS = 7* 1013 cm-3, 𝜒 = 3 m2/s, PSOL = 100 MW  
and no impurities  
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EMC3-EIRENE results show plasma build up on the backside of the dome

• Build-up in right place →
likely to increase the 
plenum pressure

• Radiation front will move as 
frad increases 

• Study in progress to 
understand the effect of 
the shift of radiation front 
with increase frad
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Peak heat flux on the divertor plate decreases as the frad increase (in 2D) 

Classical Divertor

Heat load on divertor plate with 20% 
frad

Heat load on divertor plate with 80% 
frad

• EMC3- EIRENE calculations performed with nIBS = 7* 1013 cm-3, 𝜒 = 1.5 m2/s, PSOL = 100 MW
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Peak heat load decreases as frad increases for both divertor concepts

Lehmer Peak Heat Flux

𝐿 𝑥 =
∫ 𝑞30𝑑𝑠

∫ 𝑞29𝑑𝑠

Where 𝑞 = Heat load in MW/m2

𝑠 =  entire surface area of the relevant target

Palpha+Pech>=160 MW, PSOL=100 MW
Prad,core=60 MW, frad,core~40%, fNe=0.5% 
→ frad,SOL =50-70% → frad,tot = 68-81% requirements

Ref: Guttenfelder, W., et al. JPP 91.3 (2025): E83
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Flux averaged target density decreases as frad increases for both divertor concepts

𝑛𝑡 =
∫ 𝑛Γ𝑠𝑑𝑠

∫ Γ𝑠𝑑𝑠

Flux Average Target Density

Where  𝑥 = Target density. in 1013 cm-3

𝑠 =  entire surface area of the relevant target
Γ𝑠= particle flux at the surface element 𝑑𝑠

nsep
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Peak target temperature on the divertor plate decreases as the frad increase (in 2D) 

Classical Divertor

Electron Temp. on divertor plate with 
20% frad

Electron Temp on divertor plate with 
80% frad
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Peak target temperature decreases as frad increases for both divertor concepts

𝑇𝑡𝑝𝑒𝑎𝑘 =
∫ 𝑇30𝑑𝑠

∫ 𝑇29𝑑𝑠

Lehmer Peak Target Temperature

Where  𝑇 = Target temp. in eV
𝑠 =  entire surface area of the relevant target
Γ𝑠= particle flux at the surface element 𝑑𝑠
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Flux average target temperature decreases as frad increases for both divertor concepts

Flux Average Target Temperature

𝑇𝑡𝑝𝑒𝑎𝑘 =
∫ 𝑇30𝑑𝑠

∫ 𝑇29𝑑𝑠
𝑇𝑡𝑎𝑣 =

∫ 𝑇Γ𝑠𝑑𝑠

∫ Γ𝑠𝑑𝑠

frad > 80 needed to decrease 
the temp. to engg. limits 

Lehmer Peak Target Temperature
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Temperature at separatrix is greater than 100 eV at high frad for both divertor concepts

Lehmer Peak Target Temperature Temperature at Separatrix
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Required Neon concentration consistent with plasma core assumptions

• Even at high radiative fraction and high 
upstream density nIBS = 7* 1013 cm-3, 
concertation of Neon in the core is 
maintained small

𝑐𝑁𝑒 =
𝑛𝑁𝑒

𝑛𝑝𝑙𝑎𝑠𝑚𝑎

Neon fraction at core boundary:

Note: From core modeling, fNe,lcfs= 0.005 
give frad,core=40-50%

Ref: Guttenfelder, W., et al. JPP 91.3 (2025): E83
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Summary and Discussions

• First of its kind -- 3D plasma-neutral simulations for a reactor scale stellarator power 
plant! 

• Downstream density higher than the upstream density is expected in Infinity Two 

• With increasing frad, target temperature reduces, and sufficiently low heat flux on target 
is achievable in Infinity Two

• Higher frad will be required to reduce the target temperature and control the sputtering 

• Simulations show Infinity Two retains relatively high Tlcfs and manageable levels of fNe,lcfs 
at high frad, as required for core
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Ongoing and Future Work

• To demonstrate access to sufficiently small peak target temperature while 
maintaining sufficiently high LCFS temperature

• To evaluate the neutral pressure on the targets/pumps and correlate it to the 
plenum pressure to determine pumping speed required 

• To understand the stability of detachment at higher frad (X- vs O- stability)

• To understand the sensitivity of 𝜒, 𝐷 on detachment and other physical 
parameters especially heat flux width 
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Thank you!
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