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What is in-pulse data processing?

A set of interdependent programs/actors that calculate plasma parameters from measurements.

They use as input both the raw data from the diagnostics and processed data by other programs (hence
the interdependence).

The complete workflow(s) can be represented by a directed acyclic graph (DAG).

The wider goal is to provide a consistent interpretation of the plasma state (with uncertainties) from the
measurements during each pulse to guide the current experimental session.

More specifically to provide accurate measurement parameters (MP) in time to-prepaié the next pulse in
the control room. &
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In-pulse analysis workflows: from diagnostics to physics

DAN (data archiving network)

{ Magnetics ] [ Thomson ] [ Bolometer ] [ (ca;)?:hrgr?ge ]
[ Heating ] [ ECE ] [ Spectroscopy ] [ Interferometry ]
Labels. [ Diaég~n506°,)tics J

Based on D. Dodt https://doi.org/10.1016/j.fusengdes.2012.11.015
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Apache Airflow as the workflow
manager

Open source
Python
DAG

Metadata

Database

Web and CL interfaces ) ][

Scalable (built-in task parallelism)

Scheduler

----------

l

Webserver

Operators can have introspection Workers
into actors:

= Fault detection l

» Restart

» Replace

Workflow manager: Airflow
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Airflow features at a glance

1. Retry Mechanism:

» Automatically retries failed tasks to ‘retry_delay’: tinedelta(minutes=5),
enhance reliability.

Ini 1ze the DAG
with DAG(
dag_id = 'yr‘nr time_da

2. Configuring TaSk SChedUIing: default_args = default args

description = 'A DAG witl
* Inbuild scheduling with Airflow. f];:fjﬁi‘j\,,giﬁﬁggai]0','
as dag:
« External scheduling. S S ———
ef prlnt tlme()
print(f"Current Time: {datetime.now

3. Parallel Execution:

T end_message():

« Parallelism: Maximum number of ~ print("Workflow Completed S
tasks running across all DAGs. # Task 1: Print the current time
. print_time_task = PythonOperator@
« Concurrency: Maximum tasks task_id="print_time’,
. th 11 ll rint_time,
allowed for a single DAG. ) e
# Task 2: Print an end message
4. Task Dependencies: end L :f{f:‘f’}ope'ato'(
» Specify execution order explicitly. L gL

# Define task sequence flow
print_time_task >> end_message_task

Workflow manager: Airflow



Simple parallelization per time slice

Most in-pulse actors process single time slices.

We can process time slcies in batches / ranges with simple parallelism

. Per actor / task:

Task 1

*  Or per workflow:

1

Task 4

|, Split based on ]

timeslices J

Workflow manager: Airflow
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First application: equilibrium reconstruction with synthetic magnetics constraints

Magnetics Actor Equilibrium_Actor
BashOperator BashOperator

Magnetics Actor
 Magnetics_prep — Reads machine/diagnostic specific data.

« Magnetics — Synthetic diagnostic modelling for magnetics measurements.

Equilibrium Actor
« Equilibrium_prep — Reads machine/diagnostic specific data for the equilibrium reconstruction.
» Equilibrium —Actor used to reconstruct plasma equilibrium.

« Machine agnostic: diagnostic/machine specificities are parameters to the actors.

- Code agnostic: actors exchange data in IDS format, easily replaceable by other actors with the same
inputs and outputs.

* In this particular exercise:
predictMagnetics (from the Minerva framework, L. Appel, UKAEA)
EFIT++ (L. Appel, UKAEA)

Workflow manager: equilibrium reconstruction



First application: equilibrium reconstruction with synthetic magnetics constraints

EFIT++: Poloidal Flux: ITER, 135011, t=385.9275978120551
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Workflow manager: equilibrium reconstruction

[ Scenario ] [Machine Description]

equilibrium _
pf_active magnetics

PredictMagnetics

magnetics
pf_active
/4
Y
/4
U
Y
»
. [ Machine Description ]
magnetics
pf_active {pf_passive wall  tf J

equilibrium

M. Schneider @ ITPA TG Diag 2022



First application: simple parallelism

« Workflow info: the Magnetics Actor for IMAS Pulse Performance Comparison: Serial vs Parallel Execution
105027, consisting of 614 timeslices. B mm= Serial Execution

= parallel Execution
« Serial Execution: o e

« Total execution time: 7.8 minutes.

« Tasks were executed sequentially without concurrency. .
« Parallel Execution + Merge:

« Average execution time of 5 parallel runs : 1.5

minutes.
« Merge operation of the runs : 0.5 minutes.

« Total execution time reduced to 2.0 minutes (1.5 + 0.5
minutes).

« Conclusion:
« Even with the overhead of the merge step, the

average execution time of the parallel runs combined

. . o ) . - Serial/Direct Run Parallelization + Merge
is significantly faster than the serial/direct run. Run Type

Total: 2.0 mins

Time (minutes)

In-pulse data analysis at ITER
Paulo Abreu, 6" IAEA TM FDPVA 13
9th September 2025, Shanghai, China

Workflow manager: equilibrium reconstruction



In-pulse Workflow Framework

Developed a mock in-pulse processing workflow to simulate a complete plasma analysis
workflow during a pulse.

« The workflow serves as a blueprint for future integration of real physics-based codes in
ITER's real-time processing pipeline.

« All computational steps currently use placeholder actors, designed to be replaced with
validated physics modules in future iterations.

« This framework establishes a baseline architecture for modular, scalable in-pulse
workflows spanning multiple diagnostics and control loops.

Workflow manager: framework



In-pulse Workflow Simulation
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In-pulse Workflow Simulation in Airflow

starl
@ success
r
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In-pulse Workflow Simulation in Airflow

Failure detection: detects failures and supports
resolution through retry logic, fallback paths, and
execution monitoring.

Failure resolution: includes alternative placeholder
codes that can be triggered dynamically if a primary
actor fails enabling fault tolerance.

The architecture supports horizontal scaling, where =
multiple timeslices can be processed concurrently as
they arrive.

It also enables vertical scaling, allowing additional
dependent tasks (e.g., diagnostics, post-processing) to
be added without disrupting existing workflows.

orpowert

The orchestration setup is modular and extensible,
allowing increased complexity and integration over time
without changing the core design.

Workflow manager: framework



Workflow Simulation: in-pulse and reprocessing

1. In-Pulse Workflow (Simulated):

Mimics online timeslice-by-timeslice processing during an active pulse. Tasks
triggered sequentially as new timeslices arrive.

2. Reprocessing Workflow (Simulated):

« Executes after pulse completion using full data availability. Represents a traditional,
serial processing pipeline.

« Both workflows use identical placeholder actors and input conditions, isolating
orchestration behaviour for easier comparison.

« [Each actor had randomized processing times, generated deterministically using the
component's name as a seed.

Workflow manager: framework



Workflow Simulation: in-pulse and reprocessing

In-pulse: Airflow execution time

parallel processing _;h
PPOOOO®

2

-

Reprocessing:
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Data visualization and exploration
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https://imas-paraview.readthedocs.io/en/latest/training.html
https://imas-paraview.readthedocs.io/en/latest/training.html
https://imas-paraview.readthedocs.io/en/latest/training.html
https://github.com/iterorganization/IMAS-ParaView
https://github.com/iterorganization/IMAS-ParaView

Example: )
. JOREK data (psi) '
= Divertor '-

= Limiter

e 3
—
\

[}
B
.

In-pulse data analysis at ITER

; ; ; Paulo Abreu, 61 IAEA TM FDPVA 23
3D Visualization 9th September 2025, Shanghai, China



Example: Time: 0.250000

3.3e+05
300000

JOREK data 250000

Animation of the
electron
temperature and
wall currents.

Data provided by
J. Artola.

Description_ggd J_tfotal (A.mA-2) Magnitude

— 5.0e+03

Electrons Temperature (eV)

3D Visualization




Future work

= Workflows:
» Realistic input data:

» Use synthetic diagnostic models as input to the
workflows (see presentation from S. Pinches).

= Use mapped experimental data from other devices.
» [ntegrate with MUSCLES3 (persistent actor framework):
= Work by F. Poli based on the ETS-PAF

» H&CD workflow by M. Schneider

= 3D visualization: further improvements based on user request

Future work
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