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Bayesian inference

Nonparametric 

density profile

Density profile samples 

from Gaussian process

• 𝑃 𝐻 𝐷 : Posterior

– The probability that the hypothesis is true 

with given measured data (Inference)

• 𝑃 𝐷 𝐻 : Likelihood

– The probability that the data is generated 

with given hypothesis 

• 𝑃 𝐻 : Prior

– The probability that the hypothesis is true 

• 𝑃 𝐷 : Evidence or Marginal likelihood

𝑃 𝐻 𝐷 =
𝑃 𝐷 𝐻 𝑃 𝐻

𝑃(𝐷)

𝑯𝒏𝒆

𝒇𝑻𝑪𝑰 𝒇𝑻𝑺

𝑫𝑻𝑪𝑰 𝑫𝑻𝑺

𝒇𝑩𝑬𝑺

𝑫𝑩𝑬𝑺
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𝑃 𝐻  can be

➢ Gaussian process to model smooth spatial profiles. (e.g. density)

➢ Prediction from previous step (in Kalman filter)

➢ Well-trained neural network

Add more diagnostic data and more informative prior 

𝑃 𝐻 𝐷1, … , 𝐷𝑛 , ҧ𝜃1, … , ҧ𝜃𝑛
∝ 𝑃 𝐷1 𝐻 …𝑃 𝐷𝑛 𝐻 𝑃 𝐻| ҧ𝜃1 …𝑃 𝐻| ҧ𝜃𝑛

The posterior become sharper -> leading to better estimation

➢ TS+TCI+BES density profile estimation

➢ Hall sensor + inductive coil probe for drift-free 

magnetic field estimation

➢ Nonnegativity for bolometer tomography
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Data Fusion of GP prior, TS and TCI for density profile estimation

𝑃 ത𝑛𝑒| ҧ𝜃

𝑃 ത𝑛𝑒| ҧ𝜃 𝑃 ҧ𝑑𝑇𝑆 ҧ𝑓, ҧ𝜃 𝑃 ҧ𝑑𝑇𝐶𝐼 ത𝑛𝑒, ҧ𝜃

𝑃 ത𝑛𝑒| ҧ𝜃 𝑃 ҧ𝑑𝑇𝐶𝐼 ത𝑛𝑒, ҧ𝜃

𝑃 ത𝑛𝑒| ҧ𝜃 𝑃 ҧ𝑑𝑇𝑆 ത𝑛𝑒, ҧ𝜃



5

Edge density profile refinement by using TCI, 
Thomson scattering and BES
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Deuterium Beam Emission Spectroscopy (BES) in KSTAR

Background subtraction  

+ Relative intensity calibration

Neutral Beam injected into the plasma

Deuterium atoms react with plasma particles

Excitation, ionization, charge exchange, 

spontaneous emission occurs

Collect Doppler-shifted 𝐷𝛼 emission (~660 nm)

Top view of the KSTAR BES observation geometry

[M. Lampert, RSI 86, (2015)] 

BES relative intensity #28030 t=2.8s
BES detecting position

on NBI1-A plane at #28030
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Collisional Radiative model for beam-plasma interaction

𝑑

𝑑𝑥

𝑛1
𝑛2
⋮
𝑛11
𝑛12

=
1

𝑣

𝑑

𝑑𝑡

𝑛1
𝑛2
⋮
𝑛11
𝑛12

= [ ധ𝑋𝑒𝑛𝑒 + ധ𝑋𝑖𝑛𝑖 + Ӗ𝐴]

𝑛1
𝑛2
⋮
𝑛11
𝑛12

Decreasing population

Ion & electron collisional de-excitation

Spontaneous emission

Ionisation

Increasing population

Ion & electron collisional excitation

Spontaneous emission

Recombination

𝑛𝑝

𝐷

𝐷−

𝐷2

𝐷3
+

𝐷2
+

𝐷+

Mutual neutralization

Dissociative 

excitation

Direct 

excitation

Dissociative 

recombination

Dissociative 

recombination

Recombination

For BES, solve multivariable ODE,

e.g., ധ𝑋𝑒=
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Beam-plasma simulation by given plasma profile

CR model 

simulation

#28030 at 2.8s Electron density profile #28030 at 2.8s Electron temperature profile

TCI + Thomson scattering Thomson scattering

BES intensity and N=3 population profile does not match
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Bayesian Graphical Model for BES, TCI and TS

𝑇𝑒 profile

𝑛𝑒 profile 𝑛𝑒 mapping

Rate coefficient

Collisional 

radiative model

𝑛3 population

Observed BES

Deuterium

BES Geometry

𝑇𝑒 mapping

𝑛𝑒 Gaussian 

Process Prior Line Integrated

𝑛𝑒

Observed 

Interferometer

𝐴 𝑅 = 𝛼𝑁3(𝑅)

Bayesian Inference

TS

BES Likelihood

Interferometer 

Likelihood

𝑑𝑛𝑖(𝑅)

𝑑𝑅

=
1

𝑣𝐷
෍

𝑗=1

𝑀

ቂ

ቃ

𝑛𝑒 𝑅 𝑎𝑖𝑗
𝑒 𝑇𝑒 𝑅

+ 𝑛𝑝 𝑅 𝑎𝑖𝑗
𝑝
𝑣𝐷 + 𝑏𝑖𝑗 𝑛𝑗(𝑅)

Main purpose of Hydrogen Beam Emission Spectroscopy 

(HBES) is edge density fluctuation measurement

◆ Cons: Hard to measure absolute electron density profile

Thomson scattering (TS) is essential diagnostic for electron 

density and temperature measurement with good accuracy

◆ Cons: Low precision at edge & lack of edge channel 

number

Interferometer have good precision 

◆ Cons: Measure line integrated electron density

Observed 𝑛𝑒
Thomson 

Scattering
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Data fusion of TS, TCI and BES

for beam-plasma simulation and plasma density estimation

Bayesian inference

𝑃 ҧ𝑓 ҧ𝑑, ҧ𝜃 ∝ 𝑃 ҧ𝑑 ҧ𝑓, ҧ𝜃 𝑃 ҧ𝑓| ҧ𝜃

Data Fusion for BES, Thomson scattering and TCI

𝑃 ത𝑛𝑒 ҧ𝑑𝐵𝐸𝑆, ҧ𝑑𝑇𝑆, ҧ𝑑𝑇𝐶𝐼, ҧ𝜃 ∝ 𝑃 ത𝑛𝑒| ҧ𝜃 𝑃 ҧ𝑑𝐵𝐸𝑆 ത𝑛𝑒, ҧ𝜃 𝑃 ҧ𝑑𝑇𝑆 ത𝑛𝑒, ҧ𝜃 𝑃 ҧ𝑑𝑇𝐶𝐼 ത𝑛𝑒, ҧ𝜃

MCMC is used to find distribution

TCI

BES absolute 

calibration factor

𝑇𝑒 profile from TS
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Sensor fusion of magnetic coil and Hall sensor

Sensor Fusion and Magnetic Drift Estimation in Magnetic Measurements

Using Kalman Filter for Long-Duration Plasma Operations

Jaewook Kim, Jayhyun Kim, Young-chul Ghim, and J. G. Bak
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Integrator generates “Drift” by offset

Radiation induced electromotive force

Thermo-electromotive force

Others…

Hall sensor have ”Low SNR”

Limited high-frequency response

Sensitivity to radiation

Susceptibility to electromagnetic noise

Coil + Hall sensor : No drift and High SNR

Magnetic Coil and Hall Effect Sensor
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Kalman Filter (Bayes Filter with only Gaussian distribution)

Predict: 𝒙𝑡 = 𝑨𝑡−1𝒙𝑡−1 +𝑩𝑡𝒖𝑡 +𝒘𝑡

Correct: 𝒛𝑡 = 𝑯𝑡𝒙𝑡 + 𝒗𝑡

𝒙0 ∼ 𝑁 𝒎0, 𝑷0 ,  𝒙𝑡 ∼ 𝑁 𝒎𝑡 , 𝑷𝑡 , 

𝒘𝑡 ∼ 𝑁 0,𝑸𝑡 ,  𝑣𝑡 ∼ 𝑁 0,𝑹𝑡

Prediction Step

𝑃 𝑥𝑡−1 𝑢0:𝑡−1 𝑧0:𝑡−1
→ 𝑃 𝑥𝑡 𝑢0:𝑡 𝑧0:𝑡−1
𝑚𝑡
− = 𝐴𝑡−1 𝑚𝑡−1

𝑃𝑡
− = 𝐴𝑡−1𝑃𝑡−1𝐴𝑡−1

𝑇 + 𝑄𝑡

Correction Step

𝑃 𝑥𝑡 𝑢0:𝑡 𝑧0:𝑡−1 → 𝑃 𝑥𝑡 𝑢0:𝑡 𝑧0:𝑡
𝑦𝑡 = 𝑧𝑡 − 𝐻𝑡𝑥𝑡

−

𝑆𝑡 = 𝐻𝑡𝑃𝑡
−𝐻𝑡

𝑇 + 𝑅𝑡
𝐾𝑡 = 𝑃𝑡

−𝐻𝑡
𝑇𝑆𝑡

−1

𝑚𝑡 = 𝑚𝑡
− + 𝐾𝑡𝑦𝑡

𝑃𝑡 = 𝑃𝑡
− − 𝐾𝑡𝑆𝑡𝐾𝑡

𝑇

𝑡 + 1

measurement

Bayes rule for bayes filter

𝑃 𝑥𝑡 𝑢1, 𝑧1, … , 𝑢𝑡, 𝑧𝑡 = 𝑍 ⋅ 𝑃 𝑧𝑡 𝑥𝑡, 𝑢1, 𝑧1, … , 𝑧𝑡−1, 𝑢𝑡
     ⋅ 𝑃 𝑥𝑡 𝑢1, 𝑧1, … , 𝑧𝑡−1, 𝑢𝑡

Markov property of state

𝑃 𝑥𝑡 𝑥1:𝑡−1, 𝑧𝑡−1, 𝑢𝑡−1 = 𝑃 𝑥𝑡 𝑥1:𝑡−1

B𝑒𝑙 𝑥𝑡 = 𝑃 𝑥𝑡 𝑢1, 𝑧1, … , 𝑢𝑡, 𝑧𝑡
=𝑍 ⋅ 𝑃 𝑧𝑡 𝑥𝑡 𝑃׬ 𝑥𝑡 𝑢𝑡, 𝑥𝑡−1 B𝑒𝑙(𝑥𝑡−1) 𝑑𝑥𝑡−1
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State-Space model for sensor fusion (w/o drift)

▪ ሶ𝐵𝐶,𝑡 = ሶ𝐵𝑡 + 𝜖𝐶,𝑡

▪ 𝐵𝐻,𝑡 = 𝐵𝑡 + 𝜖𝐻

▪ The state-space model :

▪ 𝐵𝑡 = 𝐵𝑡−1 + ሶ𝐵𝐶,𝑡𝑑𝑡 + 𝜖𝐶,𝑡𝑑𝑡 (or 𝐵𝑡 = 𝐵𝑡−1 +
ሶ𝐵𝐶,𝑡−1+ ሶ𝐵𝐶,𝑡

2
𝑑𝑡 +

𝜖𝐶,𝑡+𝜖𝐶,𝑡−1

2
𝑑𝑡)

▪ 𝑦𝑡 = 𝜖𝐻,𝑡 = 𝐵𝐻,𝑡 − 𝐵𝑡

▪ In this case, there is no offset in the coil data in the model

▪ Several papers made the hybrid magnetic sensor with this method [1,2]

𝜖𝑐,𝑡 ∼ 𝑁 0, 𝜎𝑐

𝜖𝐻,𝑡 ∼ 𝑁 0, 𝜎𝐻

Result at [*A. Quercia et al., Nucl. Fusion 2022] Result at [*P. Arpaia et al., Sensors 2021]
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Sensor Fusion without bias estimation

In fusion reactor…

Bias or Drift ↑
Hall sensor noise ↑

If we don’t consider drift 

in the model…
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Sensor Fusion without bias estimation

𝑏𝑘 is a kind of Wiener process 

(or Brownian motion)

In fusion reactor…

Bias or Drift ↑
Hall sensor noise ↑

How can we model

the noise?

It has

Markov property
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Sensor Fusion without bias estimation

In fusion reactor…

Bias or Drift ↑
Hall sensor noise ↑

We can estimate both

bias and magnetic field!
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Bias step size optimization

Posterior of hypeparameters:

𝑝 𝜃 𝑧1:𝑘, 𝑢1:𝑘 =
𝑝(𝑧1:𝑘|𝑢1:𝑘, 𝜃)𝑝(𝜃|𝑢1:𝑘)

𝑝(𝑧1:𝑘|𝑢1:𝑘)

Marginal likelihood or evidence:

𝑝 𝜃 𝑧1:𝑘, 𝑢1:𝑘 ∝ 𝑝(𝑧1:𝑘|𝑢1:𝑘, 𝜃)

𝑙𝑘 = 𝑙𝑘−1 −
1

2
𝑦𝑘
𝑇𝑆𝑘

−1𝑦𝑘 + log 𝑆𝑘 + 𝑑𝑦 log 2𝜋

𝑝 𝑧1:𝑘 𝑢1:𝑘, 𝜃 = ς𝑘=0
𝑇 ׬ 𝑝 𝑧𝑘 𝑥𝑘, 𝑢1:𝑘, 𝜃

∙ 𝑝 𝑥𝑘 𝑧0:𝑘−1, 𝑢1:𝑘, 𝜃 𝑑𝑥𝑘

Log evidence as function of step size Bias estimation with optimal step size

Bayesian Occam’s razor:

Simplest model is the best

until it explain the data
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Radiation Tomography for disruption study

-Denoising quasi-coherent noise
-Gaussian process tomography with nonnegative prior
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Tomography reconstruction for disruption study in KSTAR 

is challenging problem

▪ Shattered Pellets are injected at KSTAR O-port and G-port

▪ Poloidal Filtered AXUV arrays are installed at D-port and O-port

▪ Each AXUV array system is pinhole array with 20 lines of sight

▪ Superconductor tokamak has lack of view ports

▪ PFAA systems have bad and poor line of sight arrangement

Fast visible camera data indicate plasma radiation have 

strong asymmetry along poloidally and toroidally during 

pellet induced disruption
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Denoising quasi-coherent noise

Gaussian process-based quasi-coherent noise suppression in magnetic 

confinement devices with superconductors

J. Kim, J. Kim, Y.-C. Ghim, and J. Jang, NF 63, 106017 (2023)



22

Large noise due to IVCC

Ԧ𝑦 𝑡 = Ԧ𝑓 𝑡 + Ԧ𝜖 𝑡
When there is radiation

due to disruption 

Ԧ𝑦 𝑡 ≃ Ԧ𝜖 𝑡
If radiation is very small

• IVCC (In-Vessel Control Coil) 
induces EM fluctuation during 
plasma operation

• Cable between AXUV array and 
AMP is about 2-10m

• Signal level before amplification 
can be comparable to the 
external noise source

• Without plasma disruption, 
radiation is much smaller than 
noise
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Gaussian process regression for signal reconstruction

• The signal with noise: ത𝑦(𝑋) = ҧ𝑓 𝑋 + ҧ𝜖(𝑋), 

where 𝜖 ∼ 𝑁(0, തതΣ𝜖(𝑋, 𝑋))

• The joint probability of given data ത𝑦 and ҧ𝑓 𝑋  [*]:

ത𝑦
ҧ𝑓 𝑋∗

∼ 𝑁 0,
ഥഥ𝐾 𝑋, 𝑋 + തതΣ𝜖(𝑋, 𝑋)

ഥഥ𝐾(𝑋, 𝑋∗)
ഥഥ𝐾(𝑋∗, 𝑋)

ഥഥ𝐾(𝑋∗, 𝑋∗)

• The conditional distribution of ҧ𝑓 𝑋  with given ത𝑦
will be

• In our case, the noise is not Gaussian white noise

– It has quasi-periodic or coherent properties

• We predict for sampled position : 𝑋∗ → 𝑋

– ҧ𝜖(𝑋) ∼ 𝑁(0, തതΣ𝜖(𝑋, 𝑋))

– Auto-correlation matrix :

Toeplitz matrix of auto-correlation function

– Σ𝜖,𝑖𝑗 = Σ𝜖,𝑖𝑗 = 𝑎𝑖−𝑗
[*] David Duvenaud, et al., arXiv:1112.4394 (2011)
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Gaussian process regression for signal reconstruction

Optimized with 

only variance

Denoising model 

with only variance

Optimized with 

covariance

Denoising model 

with only variance

Optimized with 

covariance

Denoising model 

with covariance

• Evidence maximization is used to get hyperparameter 𝜃 = (𝜎𝑓 , 𝑙)

• Model evidence : 𝑝 𝑦 𝑚 = ׬ 𝑝 𝑦 𝜃,𝑚 𝑝 𝜃 𝑚 𝑑𝜃



25

Gaussian process tomography with 
nonnegative prior



Pixel based tomography shares the equation:

തd : Line integrated signals, measured data, 𝑚 vector

ഥഥW : Contribution factor of local emissivity for each sensor

𝑚 × 𝑛 matrix, 𝑚 is # of LOS, 𝑛 is # of pixel

ҧ𝑓 : Local emissivity, 𝑛 vector

ҧ𝜖 : Uncertainty of measured data, 𝑚 vector

Regularization term is needed when least square 

estimation has infinite solutions (e.g. 𝑚 < 𝑛)

For KSTAR PFAA:

▪ Gaussian Process Tomography (GPT)

✓ Tomography model + Gaussian process

✓ Gaussian process is used for regularization

Tomography : Reconstruction of local emissivity from measured data
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Tomography reconstruction is ill-posed problem

PFAA-D (left) / -O(right) Lines of sight 
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Introduce Bayesian Inference and Gaussian Process Tomography

• Posterior [5]

Phantom ReconstructionSynthetic data

• Gaussian process prior

• Likelihood of the model:

× =
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Negative emission makes several problems for tomography 

reconstruction

Phantom ReconstructionSynthetic data

• Without absorption, negative radiation in the tomography results is non-physical, but we have negative values

-> The total power of radiation is expected to be lower than actual.

-> It was not possible to estimate the shape of radiation well.

• Crossing points of two pinhole arrays are sparse along radial direction 

• We can not utilize symmetry along flux surface for disruption study.

× =
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Get samples of Nonnegative Gaussian process tomography 

through Gibbs sampling

Phantom

GP

Reconstruction

[*] J.A. Breslaw, Applied Mathematics Letters 7, (2011)

Nonnegative-GP

Reconstruction 

from Gibbs samples

• Monotonically decreasing gaussian process is a kind of 

TMVN (Truncated Multivariate Normal Distribution)

• 𝑝 ҧ𝑓 ҧ𝑑, ҧ𝜃 ∝ exp −
1

2
ҧ𝑓 − ҧ𝜇

𝑇
Σ−1 ҧ𝑓 − ҧ𝜇 for 𝑥 ≥ 0,

0 for otherwise

• Gibbs sampling is a kind of efficient MCMC algorithm 

which can sample from TMVN distribution [*]

1. Begin with initial value ത𝑋𝑖 = (𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑛
𝑖 )

2. For next sample, sample from

𝑝(𝑥1
𝑖+1|𝑥2

𝑖 , 𝑥3
𝑖 , … , 𝑥𝑛

𝑖 , [∞, 0])

𝑝(𝑥2
𝑖+1|𝑥1

𝑖+1, 𝑥3
𝑖 , … , 𝑥𝑛

𝑖 , [∞, 0])
𝑝(𝑥3

𝑖+1|𝑥1
𝑖+1, 𝑥2

𝑖+1, … , 𝑥𝑛
𝑖 , [∞, 0])

…

𝑝(𝑥𝑛
𝑖+1|𝑥2

𝑖+1, 𝑥3
𝑖+1, … , 𝑥𝑛−1

𝑖+1 , [∞, 0])
3. For 𝑚 samples, repeat it 𝑚 times

Conditional 

truncated 
univariated normal 
distribution with 

other given values
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Tomography reconstruction for disruption study in KSTAR 

is challenging problem - Nonnegative prior can solve this!

▪ Shattered Pellets are injected at KSTAR O-port and G-port

▪ Poloidal Filtered AXUV arrays are installed at D-port and O-port

▪ Each AXUV array system is pinhole array with 20 lines of sight

▪ Superconductor tokamak has lack of view ports

▪ PFAA systems have bad and poor line of sight arrangement

Fast visible camera data indicate plasma radiation have 

strong asymmetry along poloidally and toroidally during 

pellet induced disruption

t=4.0028s
GPT w/o constr.

t=4.0028

GPT with Nonneg.



31

Summary

• Bayesian data analysis can be used for…

– Data fusion to fully utilize given data and to get more exact plasma parameters

– It can utilize prior as much as possible to increase data analysis quality 

– Model optimization finds adequate hyperparameters for data analysis

• Adequate diagnostic model provide better result.

• Some KSTAR diagnostic result utilize Bayesian inference

– We want to expand the use of Bayesian inference for more diagnostics

• Bayesian inference have many other applications… (will be our future work)

– Data analysis considering outlier

– Data analysis with neural network (forward model can generate synthetic data)

– …
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