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Edge-localized modes

● Type of instability
● Repeating releases of energy 

and particles from plasma edge.
● Effect is intense heat flux:

• Duration < 10ms
• Waiting time < 30ms
• Energy 2-10% plasma

● Must be regulated to prevent 
damage to PFC
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Edge-localized modes
● Behavior varies from pulse to 

pulse (frequency, energy)
● Depending on experiment 

conditions

● Motivation:
• Which, and how, machine and 

plasma conditions affect ELMs
• Data driven approach to 

understand the full variability 
and find areas of safe operation
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13825 ELMs manually 
marked for ML training

214 shots, 270 windows 
JET campaign 2019-2021

Data collection

[1] L. Frassinetti et al 2021 Nucl. Fusion 61 016001

● Operating conditions or major controls:
Ip, Bt, PNBI, PICRH, gas, pellets, plasma shape, q95

● ELM behavior:
• Timing: BeII emissivity
• Size (proxy): stored energy W

Process PDB-ILW[1] data 
with advanced detection

2000+ windows, 160000+ 
ELMs from JET 2012-2020
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ELM detection
● Differentiate between events and non-events in timeseries
● Not only peaks, but regions with a specific signature
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Advanced methods
● Laplacian of Gaussian filter + threshold

(2nd order derivative and smoothing)
using kernel optimized for ELM shape

● Recurrent neural network (3 x GRU)
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Training and evaluation
● Split data into train/test/validation
● Quantify a correct detection 

(TP/FP/FN)
● Implement, fine tune, and evaluate

● ELM detection pipeline with 
master students
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Detection performance
● Good performance
● Tested on other machines
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● Eliminate outliers
● Natural ELMs
● Remains 90000+ ELMs

from 1388 windows
~ 1.5s duration
~ 66 ELMs per sample

● Varied operating conditions

Data summary
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Collective ELM behavior
● Study ELM timing

and ELM losses with 
distributions

● More info maintained
with PDF parameters

Modeling
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Tail behavior
Collective ELM behavior

● Study ELM timing 
and ELM losses with 
distributions

● More info maintained 
with PDF parameters

● Distribution tails show rare 
but large ELMs = risk
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Modeling risk: tail events
● Ways to think of the risk of 

unforeseen large ELMs
● Tail size (top 10%)
● Tail-to-body ratio of the 

ELM size
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Modeling risk

● Several ELMs of varied size 
accumulate energy

● Response time of actuators

Irregular

Regular
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Analysis: regression maps
A R Field et al 2020 Plasma Phys.
Control. Fusion 62 055010
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Analysis: multi-regression
● Models:

• Linear regression
• k-NN (k = 5%)
• SVM regression
• Random forests

● Reasonable fits for 
prediction

● Cross-validated (2/3)

● Forward selection
● Improvement in R2
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Analysis: feature importance
● Impact of each input on R2 and percentage error
● Model-averaged feature weights
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Summary
● Data:

• 13000+ marked ELMs
• Detection 90% accurate
• 1500+ shots processed

● ELM behavior:
• Features quantifying variability and risk

● Regression:
• Complex relationship
• Local effects, focus on subsets

● Explainable/interpretable data techniques

How do plasma parameters 
influence ELM behavior?

Which plasma parameters 
influence ELM behavior?

✔

~
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Summary
● Data:

• 13000+ marked ELMs
• Detection 90% accurate
• 1500+ shots processed

● ELM behavior:
• Features quantifying variability and risk

● Regression:
• Complex relationship
• Local effects, focus on subsets

● Explainable/interpretable data techniques
● Applicable to other machine subsystems
● Detection framework open source

How do plasma parameters 
influence ELM behavior?

Which plasma parameters 
influence ELM behavior?

✔

~
→ github.com/infusion-ugent
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Thank you

orcid.org/0009-0003-5702-939X

jerome.alhage@ugent.be
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ELM labeling GUI

● Semi-automated, using 
keyboard and mouse

● Draw lines on emissivity signal, 
peaks above lines are ELMs if 
they correspond to a drop in 
the (high-res) plasma energy

● Can manually position cursor 
for compound ELMs

● Clean afterward by merging 
peaks, filtering small ones…
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ELM size
Steps

● Calculate inter-ELM 
time upper limit n
(n = dt 90th percentile)

● Calculate avg. ELM 
duration m

● Detrend Wp using 
rolling mean (lag = 2*n)

● Search area start is 
80% of previous cycle 
(max: ELM start - m)

● Search area stop is 
80% of current cycle 
(max: ELM end + n)
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ELM power

How calculated
● ELM size ~ the drop in plasma 

stored energy Wp (green signal)
● ELM power is the drop energy 

(red) divided by the drop time 
(pink)

● Also calculate the max 
instantaneous ELM power
(from derivative)
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ELM power
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ELM power
● ELM power increases with increased heating power.
● Rate of increase depends on machine parameters (ex: gas rate).
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Detection benchmark

● CNN stops learning
● RNN GRU-3 still room for 

improvement (20 epochs)
● LoG-CK good for real-time
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● RNN is proof-of-concept 
with great potential

● Prefer LoG-CK for 
simplicity, false positives

Detection
preview
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Detection breakdown
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Data selection

● Distilled 90000+ ELMs
from 1388 windows
~ 1.5s duration
~ 66 ELMs per sample

● Natural ELMs
● Varied operating conditions
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Regression: feature selection
● Models:

• Linear regression
• KNN (k = 5%)
• SVM regression
• Random forests

● Reasonable fits for 
prediction

● Cross-validated (2/3)

● Forward selection
● Improvement in R2

Feature selection
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Regression: fuzzy logic
● Predict when the tail ratio (risk) 

will be high: 
• Fuzzy classes (wiki)
• Rules partition the dataset

(parts with no support hidden)
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