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Research Background

➢ Tokamaks use magnetic fields to confine hot plasma for fusion. 

➢ Magnetic control precisely adjusts field interactions to maintain plasma position and stability, preventing wall 

contact or disruptions - essential for safe fusion operation.



Research Background

➢ Importance of Tokamak Plasma Magnetic Response Simulation Models： 

• Provide safe and efficient environment for developing and testing new control strategies, avoiding risks of 

direct experimentation on actual devices.

➢ Traditional Plasma Magnetic Response Models (such as RZIP, CREATE-L) have limitations：

• Require simplified assumptions about plasma properties.

• High computational complexity.

• Although linear approximation can improve computational speed, it reduces model accuracy, especially in 

long-term experiments where errors accumulate continuously.

➢ Data-driven methods show clear advantages：

• No need for simplified assumptions about plasma properties.

• Low computational cost, high-speed real-time applications.

• Provide high-precision simulation environment for control strategy development and fault detection.



Model Framework

➢ Wavenet：A deep generative neural network model proposed by DeepMind team in 2016

• Causal dilated convolution structure.

• Residual and skip connections.

➢ Trained WaveNet Model Autoregressive Usage

• A: PF+CS coil currents

• S: Plasma current and configuration parameters
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Model Framework

➢ Dataset:100 shots for validation

➢ Evaluation Metric： 𝑅2 = 1 −
σi=1
n (𝑦𝑖 −෦𝑦𝑖)

2

σ𝑖=1
𝑛 (𝑦𝑖 −ത𝑦)2

。

• Single-step prediction

𝑅2 ≈ 0.9

• Autoregressive prediction 

𝑅2 ≈ 0.6

➢ Need optimization for autoregressive 

prediction

• Error Accumulation 

• Curve fluctuation fitting accuracy



Algorithm Optimization（Error Accumulation）

➢ Optimization 1：Input with Random Walk 

Noise

• Random Walk Noise is a special type of 

time-correlated noise, characterized by 

current noise value equals previous time 

step noise value plus a Gaussian random 

perturbation.

• It can simulate error accumulation 

problems in autoregressive situations, 

improving model robustness and 

generalization ability.

𝑁 𝑡 = 𝑁 𝑡 − 1 + 𝜀 𝑡 𝑁 0 = 𝜀 𝑡



Algorithm Optimization（Error Accumulation）

➢ Optimization 2 ：Autoregressive Multi-step Loss Function Calculation.

• Consider cumulative errors of multiple prediction steps during training. Not only calculate single-step 

prediction loss, but also consider cumulative errors when current prediction results are used as input for 

subsequent predictions.

• Different weights assigned to each output step during loss calculation in training.

• Reduce the problem of accumulated errors; Improve the stability of long sequence prediction; Make the model 

more robust to its own prediction errors.

𝑨𝑻−𝟑𝟎 ⋯ 𝑨𝑻−𝟏 𝑨𝑻 𝑨𝑻+𝟏 𝑨𝑻+⋯
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Algorithm Optimization (Accelerate Convergence, Improve 
Accuracy)

➢ Optimization 3：Composite Loss Function

• Combine three different error measures: MSE (Mean Squared Error); MAE (Mean Absolute Error) and MCE (Mean 

Cubic Error). Formula shown below, where λ₁ and λ₂ are weight coefficients controlling contribution ratio of 

different error measures.

𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸 + 𝜆₁ ∗ 𝑀𝐴𝐸 + 𝜆₂ ∗ 𝑀𝐶𝐸

• MSE can achieve fast convergence, MAE provides constant gradient for continued optimization near optimal 

solution, MCE further amplifies punishment for large errors.



Algorithm Optimization (Accelerate Convergence, Improve 
Accuracy)

➢ Optimization 4： Teacher Forcing (Combined with Autoregressive Multi-step Loss Function)

• Use real values instead of predicted values as input for subsequent steps during autoregressive multi-

step loss function training

• Accelerate training convergence, avoid instability caused by incorrect predictions in early training stages

• Weights of both methods change with increasing epochs

𝐿 = 𝜆1(epoch) ⋅ 𝐿1 + 𝜆2(epoch) ⋅ 𝐿2
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Results

𝑅2 Baseline (Opt 1+2) Opt 3 Opt 4 ALL Opt

IP 0.9477 0.9402 0.9451 0.9476

R 0.7397 0.7634 0.7716 0.7823

Z 0.8503 0.8572 0.8210 0.8632

Triangle_Up 0.9339 0.9361 0.9217 0.9425

Triangle_Down 0.9255 0.9335 0.9469 0.9526

Q95 0.6970 0.7304 0.7404 0.7512

LI 0.8432 0.8576 0.8740 0.8814

Elongation 0.9383 0.9432 0.9576 0.9637

a 0.7421 0.7398 0.7636 0.7728

Average 0.8464 0.8557 0.8602 0.8734

 Optimization 1: Input with 

random walk noise

 Optimization 2: 

Autoregressive multi-step 

loss function calculation

 Optimization 3: 

Composite loss function

 Optimization 4: Teacher 

forcing (combined with 

autoregressive multi-step 

loss function)

➢ Dataset:100 shots for validation

➢ Evaluation Metric：𝑅2 = 1 −
σi=1
n (𝑦𝑖 −෦𝑦𝑖)

2

σ𝑖=1
𝑛 (𝑦𝑖 −ത𝑦)2
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Results

➢ Successfully integrated with 

traditional PID control algorithm
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Discussion

➢ Applications: Offline simulation environment, MPC, Fault detection systems

➢ Model expansion: Extend from 1D time series prediction to 2D and 3D, enabling plasma profile and MHD instability 

autoregressive evolution.

➢ Architecture improvements: Modify skip connection weights in different WaveNet layers to focus on user-desired 

frequencies

Addition of different weights



Thank you!

Jiyuan Li 

lijiyuan@swip.ac.cn

2025.9 ·ShangHai
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