

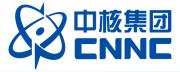
Data-Driven Tokamak Plasma Magnetic Response Modeling

Jiyuan Li ¹, Zongyu Yang ¹, Tailin Wu ², Yihang Chen ¹, Junzhao Zhang ¹, Da Li ¹, Jingyue Yuan ¹, Ruoshu Qiu ¹, Wulu Zhong ¹, Bo Li ¹

¹Southwestern Institute of Physics

²Westlake University

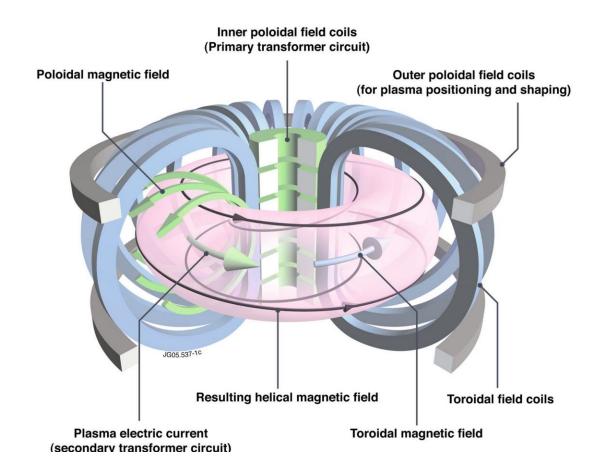
Contents

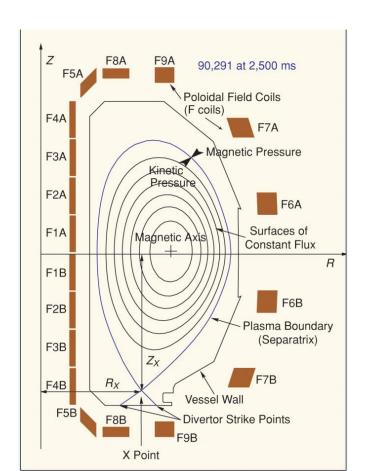


- I Research Background
 - Model Framework
 - Algorithm Optimization
 - IV Results
- **V** Discussion

Research Background

- > Tokamaks use magnetic fields to confine hot plasma for fusion.
- Magnetic control precisely adjusts field interactions to maintain plasma position and stability, preventing wall contact or disruptions essential for safe fusion operation.





Research Background

> Importance of Tokamak Plasma Magnetic Response Simulation Models:

• Provide safe and efficient environment for developing and testing new control strategies, avoiding risks of direct experimentation on actual devices.

Traditional Plasma Magnetic Response Models (such as RZIP, CREATE-L) have limitations:

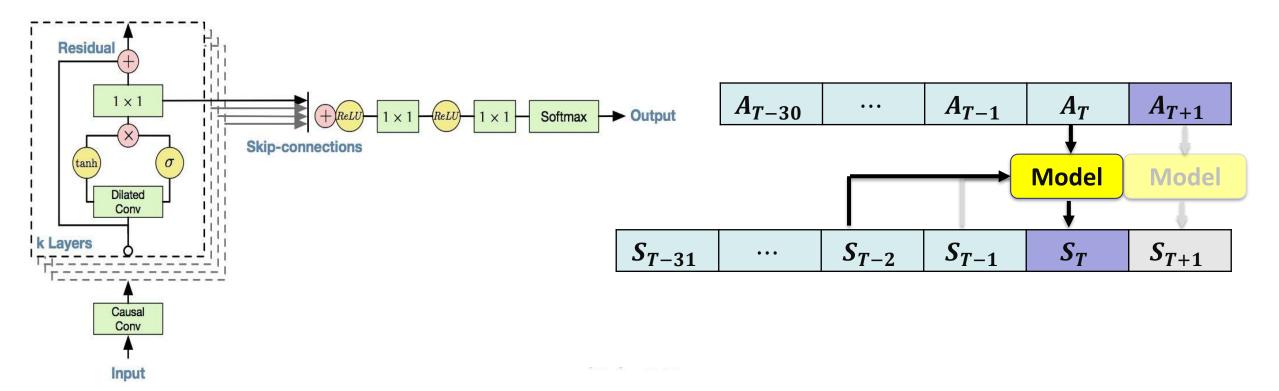
- Require simplified assumptions about plasma properties.
- High computational complexity.
- Although linear approximation can improve computational speed, it reduces model accuracy, especially in long-term experiments where errors accumulate continuously.

> Data-driven methods show clear advantages:

- No need for simplified assumptions about plasma properties.
- Low computational cost, high-speed real-time applications.
- Provide high-precision simulation environment for control strategy development and fault detection.

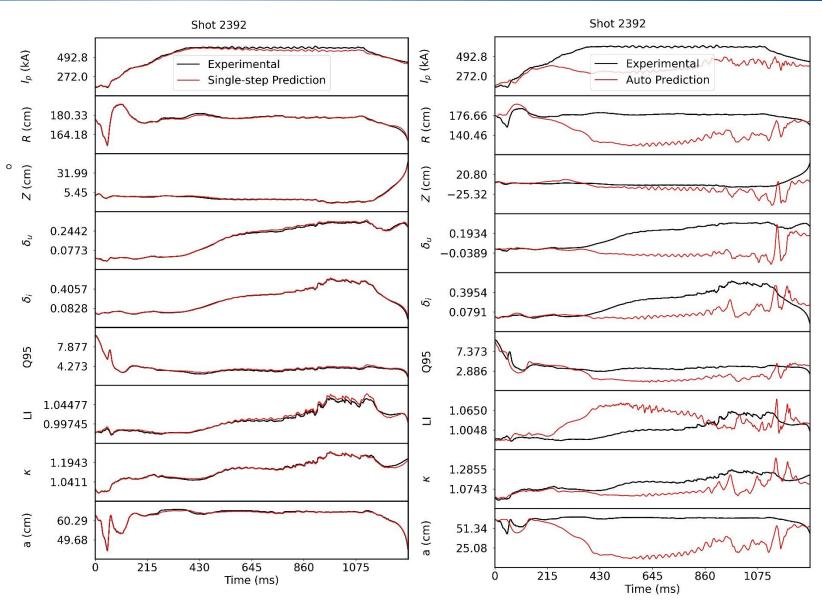
Model Framework

- > Wavenet: A deep generative neural network model proposed by DeepMind team in 2016
 - Causal dilated convolution structure.
 - Residual and skip connections.
- > Trained WaveNet Model Autoregressive Usage
 - A: PF+CS coil currents
 - S: Plasma current and configuration parameters



Model Framework

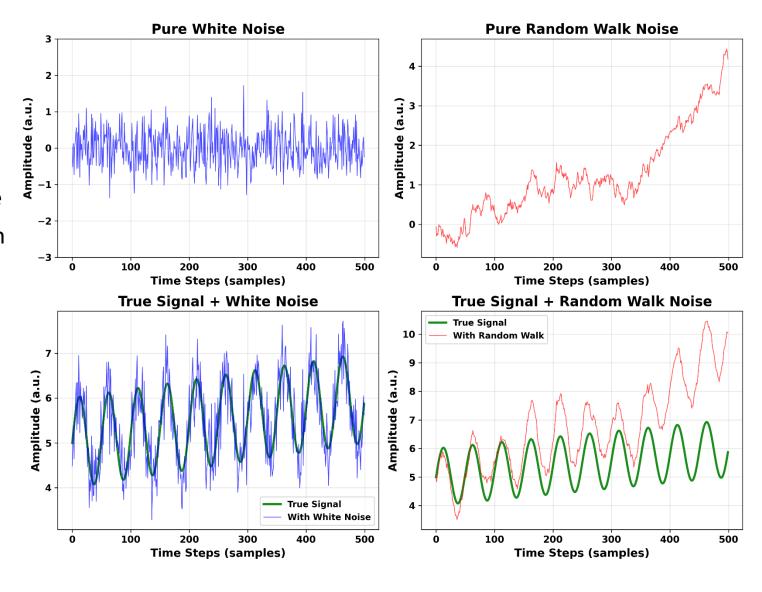
- Dataset:100 shots for validation
- > Evaluation Metric: $R^2 = 1 \frac{\sum_{i=1}^{n} (y_i \widetilde{y_i})^2}{\sum_{i=1}^{n} (y_i \overline{y})^2}$
 - Single-step prediction $R^2 \approx 0.9$
 - Autoregressive prediction $R^2 \approx 0.6$
- Need optimization for autoregressive prediction
 - Error Accumulation
 - Curve fluctuation fitting accuracy



Algorithm Optimization (Error Accumulation)

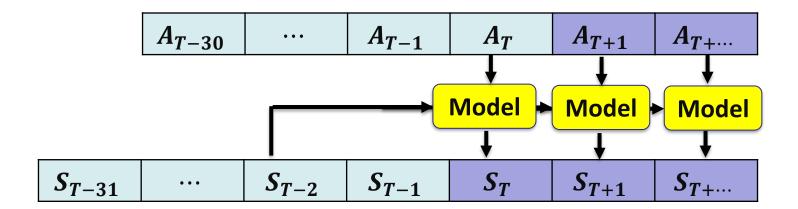
- Optimization 1: Input with Random Walk Noise
 - Random Walk Noise is a special type of time-correlated noise, characterized by current noise value equals previous time step noise value plus a Gaussian random perturbation.
 - It can simulate error accumulation problems in autoregressive situations, improving model robustness and generalization ability.

$$N(t) = N(t-1) + \varepsilon(t)$$
 $N(0) = \varepsilon(t)$



Algorithm Optimization (Error Accumulation)

- Optimization 2 : Autoregressive Multi-step Loss Function Calculation.
 - Consider cumulative errors of multiple prediction steps during training. Not only calculate single-step
 prediction loss, but also consider cumulative errors when current prediction results are used as input for
 subsequent predictions.
 - Different weights assigned to each output step during loss calculation in training.
 - Reduce the problem of accumulated errors; Improve the stability of long sequence prediction; Make the model more robust to its own prediction errors.



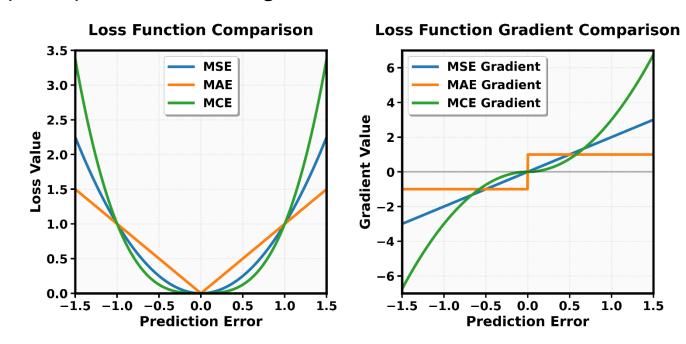
Algorithm Optimization (Accelerate Convergence, Improve Accuracy)



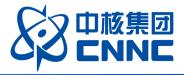
- > Optimization 3: Composite Loss Function
 - Combine three different error measures: MSE (Mean Squared Error); MAE (Mean Absolute Error) and MCE (Mean Cubic Error). Formula shown below, where λ_1 and λ_2 are weight coefficients controlling contribution ratio of different error measures.

$$Loss = MSE + \lambda_1 * MAE + \lambda_2 * MCE$$

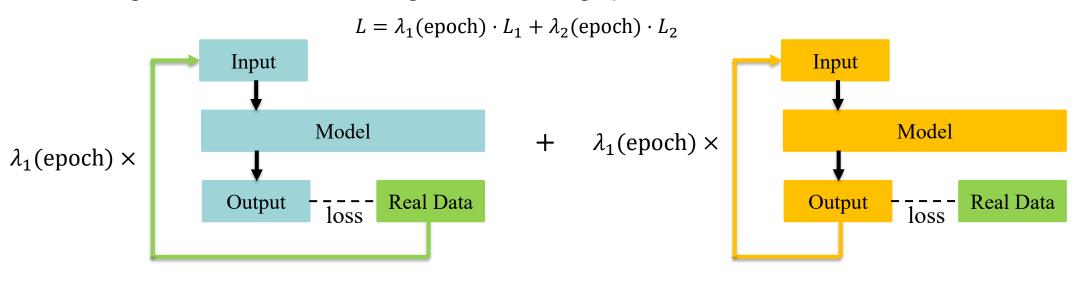
• MSE can achieve fast convergence, MAE provides constant gradient for continued optimization near optimal solution, MCE further amplifies punishment for large errors.



Algorithm Optimization (Accelerate Convergence, Improve Accuracy)



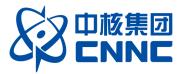
- > Optimization 4: Teacher Forcing (Combined with Autoregressive Multi-step Loss Function)
 - Use real values instead of predicted values as input for subsequent steps during autoregressive multistep loss function training
 - Accelerate training convergence, avoid instability caused by incorrect predictions in early training stages
 - Weights of both methods change with increasing epochs



Teatcher Forceing Training

Autoregressive Training

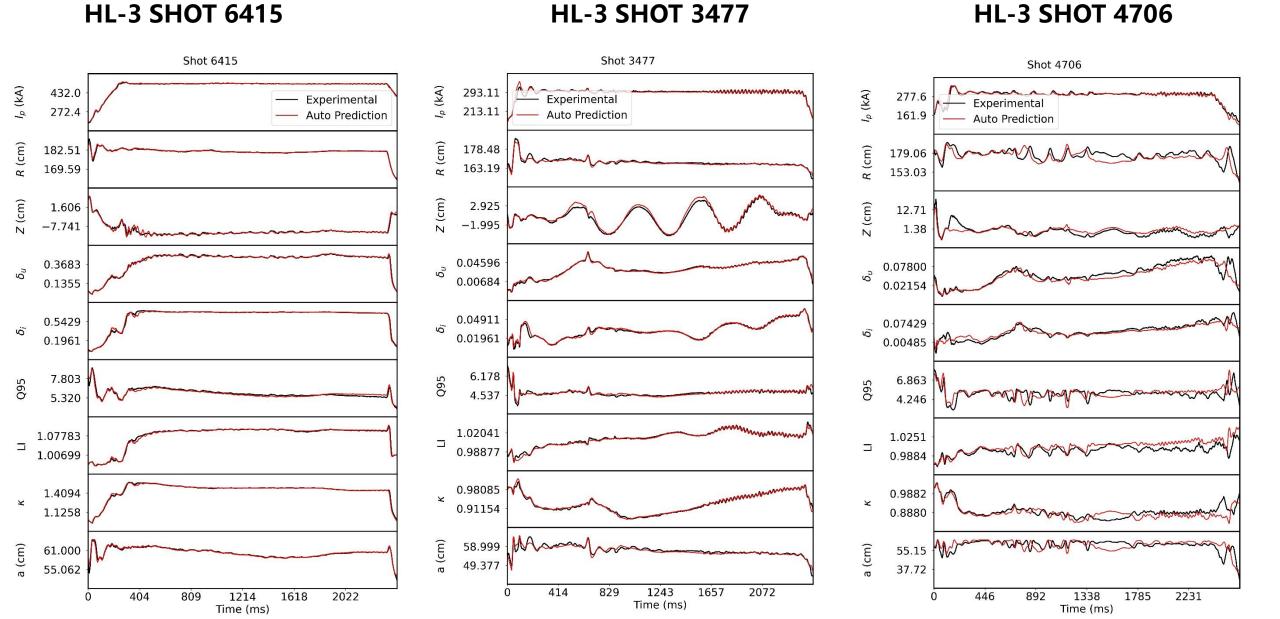
Results



- > Dataset:100 shots for validation
- Figure Evaluation Metric: $R^2 = 1 \frac{\sum_{i=1}^{n} (y_i \widetilde{y_i})^2}{\sum_{i=1}^{n} (y_i \overline{y})^2}$
- ☐ Optimization 1: Input with random walk noise
- Optimization 2:Autoregressive multi-step loss function calculation
- □ Optimization 3:Composite loss function
- □ Optimization 4: Teacher forcing (combined with autoregressive multi-step loss function)

R^2	Baseline (Opt 1+2)	Opt 3	Opt 4	ALL Opt
IP	0.9477	0.9402	0.9451	0.9476
R	0.7397	0.7634	0.7716	0.7823
Z	0.8503	0.8572	0.8210	0.8632
Triangle_Up	0.9339	0.9361	0.9217	0.9425
Triangle_Down	0.9255	0.9335	0.9469	0.9526
Q95	0.6970	0.7304	0.7404	0.7512
LI	0.8432	0.8576	0.8740	0.8814
Elongation	0.9383	0.9432	0.9576	0.9637
a	0.7421	0.7398	0.7636	0.7728
Average	0.8464	0.8557	0.8602	0.8734

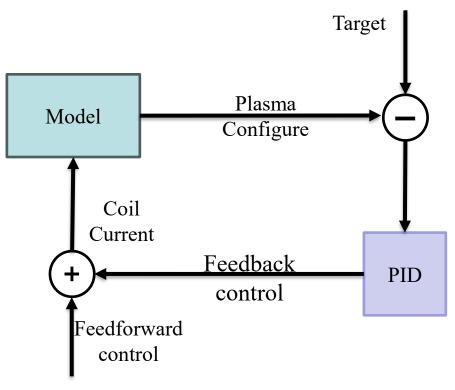
Results

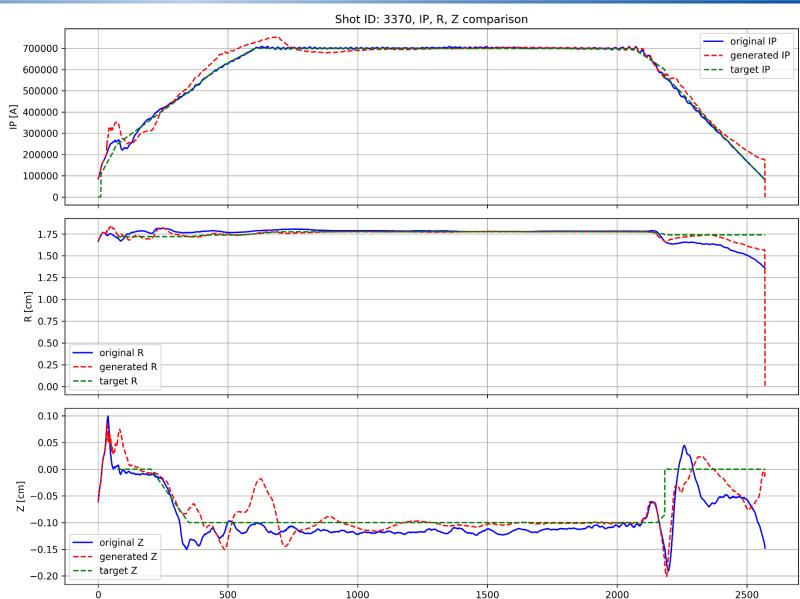


Results



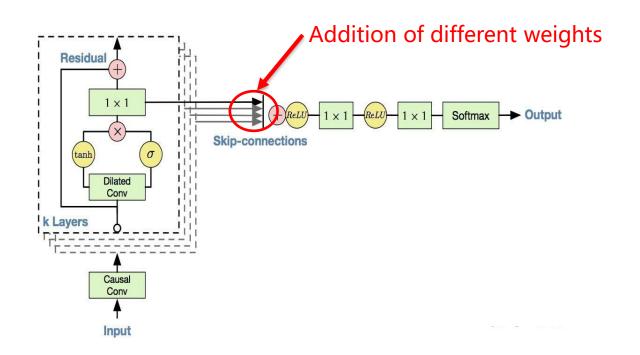
Successfully integrated with traditional PID control algorithm

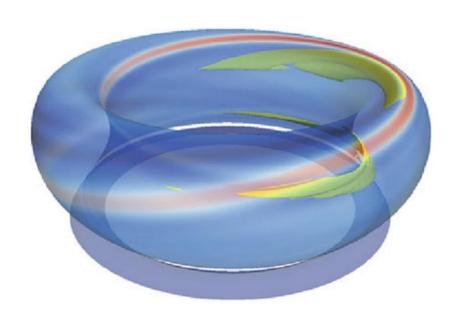




Discussion

- > Applications: Offline simulation environment, MPC, Fault detection systems
- Model expansion: Extend from 1D time series prediction to 2D and 3D, enabling plasma profile and MHD instability autoregressive evolution.
- > Architecture improvements: Modify skip connection weights in different WaveNet layers to focus on user-desired frequencies





Thank you!

Jiyuan Li lijiyuan@swip.ac.cn 2025.9 • **ShangHai**