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◼ Essential for Future Reactors

Real-time plasma control is essential for the operation of

future fusion reactors.

◼ Key Physics Parameters

Ion temperature (Tᵢ) and rotation velocity (vₜ) are among the

most critical parameters.

◼ The Bottleneck

Roles of Tᵢ and vₜ have been missing in most real-time control

scenarios.

Real-time measurement of plasma 
parameters is the input for the control loop

Significance of real-time measurement
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CXRS diagnostic on HL-3

D0 + 𝐶6+ → 𝐷+ + 𝐶5+∗ → 𝐷+ + 𝐶5+ + ℎ𝜈

Target 
spectrum

NBI

LOS

Collecting optics

32 radial channels
Cover R=1.56-2.39 m

Schematic of CXRS diagnostic 

on HL-3 tokamak 

◼ Primary Diagnostic ： Charge Exchange Recombination Spectroscopy (CXRS)

CXRS diagnostic measures light (hν) emitted by ionized impurities (e.g., C⁶⁺) following charge

exchange with neutral beam atoms.

Example of the collected CXRS spectra
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Limitations of Conventional Spectral Analysis

Example of the collected CXRS spectra 

and its fit results
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Non-linear Least-Squares Fitting

High Computational Latency
~ 100 - 1000 ms per spectrum

Dependence on Expert Knowledge
Requires accurate initial guesses for parameters

Our solution：Neural network spectrum  analysis

Target 
spectrum
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Objectives

◼ Explore the feasibility of using NNs for rapid spectral analysis

◼ Explore Interpretability of the ‘black-box’ model: attribution

analysis

◼ For application in future devices: cross-device investigation (HL-2A

and HL-3 tokamaks)
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Dataset
◼ Dataset

• Input：spectrum（1×200），channel index（1×1）

• Output (label): 𝑇𝑖 and 𝑣𝑡  1×1, 1×1) from Least-Squares Fitting

• Size: >100k spectra from 190 discharges on HL-3 tokamak

• Splitting rule: 5-fold cross validation. Stratified by shot number

Distributions of Ti and vt in the dataset

0-10 keV

Mean: 1.5 keV

0-300 km/s

Mean: 90 km/s
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Architecture of model

CNN backbone: For extracting localized, structured features

from spectral signals.

Channel embedding: Provides spatial awareness by

encoding the channel/position index.

Attention pooling: Replaces global pooling to adaptively

focus on critical spectral regions.

Multi-task learning: Shares representations to jointly predict

Tᵢ and vₜ efficiently.
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Results

Parameter R2 MAE MRE Inference time

Ti 0.933 0.14keV 9.8% 0.56 ms/ 32 
channelsvt 0.980 4.50km/s ——R2=0.933 R2=0.98

Achieves real-time capability

High fidelity across time evolution

𝑅2 = 1 −
 𝑖 𝑦𝑖 − ො𝑦𝑖

2

 𝑖 𝑦𝑖 − ത𝑦 2
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Interpretability

◼ Why interpretability?

To understand and trust the NN model

To guide model optimization

Integrated Gradient： 𝐼𝐺𝑖 𝑥 =  𝑥𝑖 − 𝑥𝑖
′ ×  

𝜕𝐹 𝑥 ′ + 𝛼 ×  𝑥 − 𝑥 ′  

𝜕𝑥𝑖
𝑑𝛼

1

0
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Interpretability

True Ti：0.77 keV

Pred Ti： 2.70 keV

Affected by ‘less-seen’ 

interfering spectral peak

• Potential solution: synthetic spectra as data augmentation[1]. 

[1] Wenjing Tian, et al. Acta Physica Sinica, 74, 078901 (2025)

◼ Why interpretability?

To understand and trust the NN model

To guide model optimization

Interpretability Diagnoses a Failure：
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Brief Summary

◼ We developed an NN model for CXRS spectral analysis.

High accuracy: reaches R2 of 0.93 for Ti and 0.98 for vt

Real-time speed: provide a profile of 32 channels in <1 ms

Interpretable & reliable: Makes decisions based on physically meaningful features.

Parameter R2 MAE MRE Inference time

Ti 0.933 0.14 9.8% 0.56 ms/ 32 
channelsvt 0.980 4.50 ——
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The Data Dilemma

◼ Scan the number of shots for training

• ~30 shots 

• The more data, the better.
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Could spectral data from previous device be of help?



HL-2A v.s. HL-3 dataset
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Similar components, 
Different Spectral structures

HL-3: 100k spectra from 190 shots.

HL-2A: 122k spectra from 89 shots.

HL-3

HL-2A



Approaches

Mix: Simply mix HL-2A data into training set.

Finetune: Pretrain with HL-2A data, finetune 

with HL-3 data. 

Scan the number of HL-3 shots for training.

Data from HL-2A helps to get a head start.



Summary
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◼ We developed an NN model for CXRS spectral analysis with high accuracy,

real-time speed and is interpretable.

◼ Spectral data from previous device help to get a head start for the NN

model in a new device.

◼ Contribute to the development of AI-assisted plasma diagnostics analysis

and real-time control in fusion reactors



Thanks

Wenjing Tian
E-mail: 

tianwenjing@swip.ac.cn

mailto:tianwenjing@swip.ac.cn
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