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Motivation: Inconsistence between different diagnostic systems

Layout of diagnostic systems on EAST tokamak The same physical quantity measured by different

systems are inconsistent

Make it difficult to use and understand data

Density diagnostic system on 
EAST tokamak

Polarimeter-Interferometer (POINT)

Microwave reflector (DPR)

Thomson scattering (TS)

CO2 Dispersion interferometer, …
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Measurement uncertainty leads to this inconsistence

• Environmental interference and instrument noise

• Statistical fluctuations of plasma

• Spatial sparsity of measurement channels

• Information loss during data acquisition and

transmission

• Cognitive or methodological bias in data

processing models

Measurement uncertaintyInconsistence between

diagnostic systems
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• Environmental interference and instrument noise

• Statistical fluctuations of data

➢ Data fusion

Reduce Methodological Uncertainty

➢ Uncertainty quantification (UQ)

Reduce decision-making risks

Accidental Uncertainty

Data fusion and uncertainty quantification

• Spatial sparsity of measurement channels

• Information loss during measurement and

transmission

• Cognitive or methodological bias in data

processing models

Methodological Uncertainty
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Traditional data analysis Integrated data analysis（Bayes）

By R. Fischer

Data fusion and UQ based on Bayesian inference
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Bayes theorem

𝑷 𝜽 𝑫 =
𝑷 𝑫 𝜽 𝑷(𝜽)

𝑷(𝑫)

Thomas Bayes

British mathematician

Posterior

Probability

Prior

ProbabilityLikelihood

Probability

𝑃 𝐷 𝜃 =
1

𝜎 2𝜋
exp(−

(𝐷 − 𝑓(𝛳))2

2𝜎2
)

Central-limit theorem
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Data fusion and UQ based on Bayesian inference

Plasma parameter

（Target quantity ne）

Diagnostic Principles of 

Systems A, B, and C

Joint probability 

distribution of 

target quantity ne

Forward 
Diagnostic 
Model Likelihood FA

Likelihood FB

Likelihood FC

MCMC sampling

Bayes formula

P 𝑛𝑒 𝐷 =
𝑃 𝐷 𝑛𝑒 𝑃(𝑛𝑒)

𝑃(𝐷)

P 𝐷 𝑛𝑒 =
1

σ 2𝜋
exp(−

(𝐷 − 𝑓(𝑛𝑒))
2

2σ2
)

𝑃 𝑛𝑒 𝐷𝑃𝑂𝐼𝑁𝑇 , 𝐷𝐻𝐶𝑁, 𝐷𝐷𝑃𝑅 , 𝐷TS, … . ∝

𝑃 𝐷𝑃𝑂𝐼𝑁𝑇−𝑛𝑒 𝑛𝑒

× 𝑃 𝐷𝐻𝐶𝑁 𝑛𝑒

× 𝑃 𝐷𝐷𝑃𝑅 𝑛𝑒

× 𝑃 𝐷𝑇𝑆 𝑛𝑒 , 𝑇𝑒

×. . . . . .

Data Forward

diagnostic model
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Construction of forward diagnostic model

Basic Parameters of Diagnostic System

POINT Z=[-0.425, -0.34, -0.255, -0.17, -0.085, 0, 0.085, 0.17, 0.255, 

0.34, 0.425] m;  λ=432 µm.

HCN R=[1.64, 1.82, 1.91];

λ=337 µm.

DPR Z=0.03 m; f=32~110 GHz; Right-hand X-wave.

Bayesian-based fusion of density data measured by

POINT, HCN, and DPR

POINT DPR
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Construction of forward diagnostic model

EFIT Magnetic Surface + Simulated Plasma Parameter Distribution

+ Diagnostic Principles

Simulated signal of POINT、HCN、DPR
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Sensitivity analysis

ϴ1：maximum of platform

ϴ3：decay of the edge

ϴ2：position of the edge

ϴ4：platform inclination
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Bayesian-based fusion of simulated data from POINT, HCN, and DPR

ϴ1：maximum of platform

ϴ2：position of the gradient

ϴ3：decay at the edge

ϴ4：platform inclination

True value：

ϴ1=5    ϴ2=0.93

ϴ3=10   ϴ4=0.18

ϴ1 ϴ2

ϴ3
ϴ4
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Bayesian-based inversion for experimental data of POINT system

Posterior sampling

Bayesian-based inversion for POINT system

Density Profiles 
calculated by 
traditional methods

Experimental data
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Bayesian-based fusion of experimental data from POINT and DPR

Experimental data

Density Profiles 
calculated by 
traditional methods

Posterior sampling

Bayesian-based fusion of density data 
from POINT and DPR
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Data fusion and UQ based on deep learning

Uncertainty representation：

➢ Bayesian neural networks

➢ Deep ensemble network

Information Fusion 76 243-297.
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CNN-based fusion of density data from POINT and HCN

电场

Multi-task 
learning

Advantage 1：

➢Not dependent on EFIT input

Trainable parameters: 243240

Optimizer: Adam

Loss function: MSE

Training set ratio: 0.8

Server: Tesla V100 32GB GPUs



ASIPP

16

CNN-based fusion of density data from POINT and HCN

Complete input Incomplete input
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Missing 1 channel

Advantage 2：

➢Robust to Incomplete input

CNN-based fusion of density data from POINT and HCN

Missing multiple channels
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Comparison of fusion methods

Bayesian inference

Advantage：

• Describes quantities and uncertainties

in a probabilistic manner

• Provide an intuitive data fusion

framework

Disadvantage：

• The priors significantly affect the

posterior results

• Sampling process may take a relatively

long time

Deep learning

Advantage ：

• Reduce method uncertainty brought by fusion

model

• Fast, suitable for online data processing

Disadvantage：

• Model training is time consuming

• Require fusion strategy design for data

with varying principles, attributes, and

features

VS
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Data cleaning

 Data Cleaning: distinguish low-quality (low SNR) or useless data from high-quality 

(high SNR) or usable data to improve data utility and reliability.

Common dirty data:

• Data missing

• Outlier

• Low signal-to-noise ratio

• Incorrect labeling

• Time displacement

Automatic data cleaning and missing data imputation

Complex measurement
environment：

• Electromagnetic
interference

• Mechanical
vibration

• Neutron
irradiation
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Data cleaning

Input：pairs of data sequences； Output：similarity correctness

traditional method

TDGS method

Line-integral density data measured by POINT system 
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RT-TDGS（Real-Time Time-domain Global Similarity）

Yang L F et al poster, IAEA, 2025.

Real-time data cleaning
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Missing data imputation

Information 13.12 (2022): 575.
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Verification, Validation and Uncertainty Quantification

ArXiv:2503.17385 (2025).
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Summary

➢ Measurement uncertainty brings risks to diagnostic reliability and decision reliability.

These risks can be mitigated through data fusion and UQ.

➢ Bayesian inference and deep learning have advantages and limitations in accuracy, processing

speed, and training costs. An appropriate data fusion method should be selected based on

specific application scenarios.

➢ All fusion methods are sensitive to errors or invalid data. Data cleaning is necessary

before data fusion.

➢ Through VVUQ, the uncertainty of experiments and simulations can be quantified, thereby

enhancing the self-consistency and interpretability of experiments and simulations.
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Thank you 

for your attention!
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