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Diagnostics in fusion reactors play a key role in both scientific (physics 

understanding, modelling, optimisation) and technological challenges 

(e.g. plasma control).

Extracting accurate and reliable information from diagnostics is not 

straightforward because:

• Plasma is among the most complex systems

(It is characterised by many variables, multi-physics and multi-scale 

phenomena, non-linearities, etc.)

• Diagnostic capabilities are limited

(They are external, line-integrated, often non-linear, etc.)
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Such a complex environment requires 

an integrated approach involving 

theory, experiment, computation, 

and artificial intelligence.

However, this integration is only 

partial, since there is typically a lack 

of synergy among these four 

methodologies.

In recent years, Physics-Informed 

Machine Learning (PIML) has been 

gaining attention because of its many 

unique features.

Hey A J G . 2009 The fourth paradigm : data-intensive scientific discovery (Microsoft Research)

Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Physics-informed machine learning. Nat
Rev Phys 3, 422–440 (2021). https://doi.org/10.1038/s42254-021-00314-5

https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
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Physics-Informed Machine Learning (PIML) offers the 
possibility to develop methodologies that synergistically 
combine theory, experiment, computation, and data-
driven approaches.

In fact, PIML methods are AI-based techniques trained to 
minimise a loss function that incorporates physical 
equations (of various types, such as Partial Differential 
Equations), as well as data from both theoretical 
considerations (e.g., boundary conditions) and 
experimental measurements.

Experiments

Theory

PIMLs: Hybrid 

Computation/Data-

driven Method

Results/Output
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Incomplete Physics 
Numerical Simulation

Physically-regularised Deep 
Learning models

Among the various Physics-Informed Machine Learning 
tools, Physics-Informed Neural Networks (PINNs) offer 
unique opportunities.

Thanks to their flexibility, PINNs can be applied to various 
purposes, such as:

• Numerical simulations (with advantages such as a 
meshless approach)

• Inverse problems
• Modelling
• Missing data reconstruction
• And more

This presentation focuses on the applications of PINNs to 
diagnostics in nuclear fusion.

Physics-based denoising

Inverse Problems

M. Raissi et al. Journal of Computational Physics, 378, 2019 https://doi.org/10.1016/j.jcp.2018.10.045

https://doi.org/10.1016/j.jcp.2018.10.045
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Inverse problems

Innovative regularisation equations which may take into account multi-diagnostics, multi-physics, non-linear, 
and multi-scale features. 

Data-Integrated Analysis

Can easily integrate different diagnostics, how they are weighted in the learning processes, modelling also 
complex behaviours like non-linearities

Noise, Outliers, Faults detection and Cross-Calibration

Mixing data and physics can help in smoothing out noise and outliers, which typically do not obey the physical 
equations. Moreover, multi-diagnostics approach can be used for cross-calibration purposes. 

Direct Modelling

In modelling, experiments and diagnostics are used to validate numerical/theoretical models. Now, data can be 
implemented in the simulation process, guiding the models and allow for direct discovery of the parameters. 
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A neural network is a mathematical model 𝒇 
defined by several parameters 𝜽 that given the 
features (or inputs) 𝑿 returns the targets (or 
outputs) 𝒀: 

 𝒀 = 𝒇 𝜽, 𝑿

From the universal approximation theorem, we 
can assert that: 

“a sufficiently deep neural network can 
approximate any function”

The process to tune the parameters 𝜃 is known 
as training

Good Fellow et al. “Deep Learning” MIT Press, (2016)
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Training steps:

• Neural network parameters are 

randomly initialized.

• The neural network is tested with 

these parameters, and the outputs are 

used to compute a loss function.

• The gradient of the loss function with 

respect to the parameters is calculated.

• The parameters are updated.

• Steps 2–4 are repeated until a 

convergence criterion is reached.
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Time-Resolved Tomography
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Line-Integrated Radiation is measured by 
bolometric cameras (at JET, 24 channels horizontal 
and 24 vertical)

Reconstructed Emissivity

48 measurements
1089 unknowns (for a 33x33 pixel image)

ill-posed problem Regularisation

Inversion 
algorithm



Time-Resolved Tomography
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Regularization is typically based on the spatial 
smoothness of emissivity, with smoother fields 
expected along magnetic surfaces.

𝑅𝑒𝑔. 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 = 𝛼∥ ∇∥𝜀
2

+ 𝛼⊥∇⊥𝜀 2

We also aim to enforce temporal smoothness by using a 
diffusion equation:

𝑅𝑒𝑔. 𝑇𝑒𝑟𝑚 =
𝜕𝜀

𝜕𝑡
− 𝐷∥∆∥𝜀 − 𝐷⊥∆⊥𝜀

2

The choice of the hyperparameters plays a crucial role 
in the quality of the reconstruction.

Physics-Informed Neural Networks (PINNs) can 
incorporate incomplete physics equations, with 
parameters (such as diffusion coefficients) automatically 
inferred by the model.

See presentation by Ivan Wyss “Latest Developments of the 

Maximum Likelihood Approach to Tomography for both Offline and 

Real Time Investigation of the Total Emission of Radiation”
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Target

Standard Method

PINN
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Target
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R. Rossi et al 2025 Nucl. Fusion 65 036030

https://iopscience.iop.org/article/10.1088/1741-4326/adb3bc 

Test performed on various types of radiations: 
• MARFE
• Edge-Localised Modes
• Impurity Accumulations

https://iopscience.iop.org/article/10.1088/1741-4326/adb3bc
https://iopscience.iop.org/article/10.1088/1741-4326/adb3bc
https://iopscience.iop.org/article/10.1088/1741-4326/adb3bc
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Interferometer HRTS and Lidar

Different diagnostics are used to measure the 
same quantity in different regions and in 
different ways. How to combine them? 

Electron density at JET is measured by: 

Interferometer: 
Line-integrated density, 8 line of sight

High Resolution Thomson Scattering (HRTS)
Local measurements limited to low field side and 
midplane

Lidar
Local measurements, low resolution, mid plane
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A unique reconstructed profile that considers both 
HRTS and interferometric measurements (LIDAR is 
used for test)

Uncertainty prediction highlights regions where 
different diagnostics say different things: useful for 
fault diagnostic detection. 

Riccardo Rossi et al 2023 Nucl. Fusion 63 126059

https://iopscience.iop.org/article/10.1088/1741-4326/ad067c 
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(Numerical) Case Study

By using 1.5D transport equations, the evolution of density and 
temperature is simulated 
1. Variable transport coefficients, where the transport coefficient 

depends on density and temperature (D n, T , 𝜒 𝑛, 𝑇 ) 
Once derived the two fields, synthetic diagnostics are used to 
simulate tokamak-like measurements. 
1. Thomson scattering (local measurement of electron density and 

temperature)
2. Interferometer (line-integrated measurement of density)
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Both the fields and the transport coefficients are 
reconstructed with high accuracy by combining the 
physics equations and the data from synthetic 
diagnostics. 

Riccardo Rossi et al. “Direct-Modelling in Nuclear Fusion by 

Combining Data-Integration and Physics-Informed Neural 

Networks”, Proceedings of International Joint Conference of 

Neural Networks (IJCNN2025) Rome, Italy, 2025
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The diagnostics, affected by noise, are reconstructed by the PINN without the noise 
and are very close to the ideal measurements, implying that the PINN can be used 
also for denoising. This feature is ensured by using the physical term in the loss, 
which smooths out unphysical phenomena like noise. 

Riccardo Rossi et al. “Direct-Modelling in Nuclear Fusion by Combining Data-Integration and Physics-Informed 

Neural Networks”, Proceedings of International Joint Conference of Neural Networks (IJCNN2025) Rome, Italy, 2025
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Physics-Informed Neural Networks (PINNs) combine physics and 
data-driven methods in a synergistic way, enabling a wide range 
of applications.

They provide efficient methods for data denoising and 
enhanced inverse problem solving by integrating multiple 
diagnostics with both data-driven and physics-guided 
approaches.

Overall, PINNs represent a highly promising framework for 
bridging computational and experimental physics. 

However, unleashing their full potential still requires significant 
progress on multiple fronts, including AI-related aspects (e.g., 
training strategies, architectures, hyperparameter optimisation), 
physical considerations (e.g., equation formulation), and 
diagnostic challenges (e.g., uncertainty handling).

Physics-Informed Neural Networks

for Diagnostics 
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