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Q) Introduction

Diagnostics in fusion reactors play a key role in both scientific (physics
understanding, modelling, optimisation) and technological challenges
(e.g. plasma control).

Extracting accurate and reliable information from diagnostics is not
straightforward because:

* Plasma is among the most complex systems
(It 1s characterised by many variables, multi-physics and multi-scale
phenomena, non-linearities, etc.)

* Diagnostic capabilities are limited
(They are external, line-integrated, often non-linear, etc.)
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\'Q) Introduction New information to improve,

correct, modify the theory
Prepare new experiments for

Such a complex environment requires hypotheses and laws testing :
Experiments

. . . Theory
an mtegrated approach anOIVIIlg Hypothesis formulation * Measurements
theory, experiment, computation, Systematic Laws Observations
and artificial intelligence. Develop numéridal 4 A
Validate models with _» I :
models from Experimental data for
. ) ) . theory measurements training
However? this 1ntf3grat19n 1s only Correct theory Prepare new Improved and faster
partial, since there is typically a lack given numerical experiments for + | experiment analysis
“ validation
of synmergy among these four  results Computation - Data-Dri
. . . ata-priven
methOdOIOgleS' Solve equation with — —=p LCxtract knowledge from data
numerical approximation . :
: . Machine and deep learning
. Visualise phenomena at ‘
In recent years, Physics-Informed different scales New numerical data for
Machine Learning (PIML) has been Predicts fraining
o i i Accelerate some
gaining attention because of its many computation

unique features.
Hey A J G . 2009 The fourth paradigm : data-intensive scientific discovery (Microsoft Research)

Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Physics-informed machine learning. Nat
Rev Phys 3, 422-440 (2021). https://doi.org/10.1038/s42254-021-00314-5
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@) Physics-Informed Machine Learning

A
Physics-Informed Machine Learning (PIML) offers the *2 o5
possibility to develop methodologies that synergistically SEJ =
combine theory, experiment, computation, and data- 2 §
driven approaches. Al o
Q|
< | Na

In fact, PIML methods are Al-based techniques trained to L;

minimise a loss function that incorporates physical &

Physics-Informed

equations (of various types, such as Partial Differential
Equations), as well as data from both theoretical
considerations (e.g.,, boundary conditions) and
experimental measurements.

Machine Learning

Machine Learning

Experiments __L PIMLs: Hybrid Numerical
Computation/Data- —> Results/Output Simulation
driven Method

Theory —
Physics Knowledge
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@) Physics-Informed Neural Networks

Among the various Physics-Informed Machine Learning
tools, Physics-Informed Neural Networks (PINNs) offer
unique opportunities.

Thanks to their flexibility, PINNs can be applied to various
purposes, such as:

* Numerical simulations (with advantages such as a
meshless approach)

* Inverse problems

* Modelling

* Missing data reconstruction

* And more

This presentation focuses on the applications of PINNs to
diagnostics in nuclear fusion.

Data Requirements

>

Deep Learning

Machine Learning

Physically-regularised Deep
Learning models

Physics-based denoising

Inverse Problems

Incomplete Physics
Numerical Simulation

Numerical
Simulation

Physics Knowledge

M. Raissi et al. Journal of Computational Physics, 378, 2019 https://doi.org/10.1016/j.jcp.2018.10.045
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@) Why PINNSs for diagnostics processing?

Inverse problems

Innovative regularisation equations which may take into account multi-diagnostics, multi-physics, non-linear,
and multi-scale features.

Data-Integrated Analysis

Can easily integrate different diagnostics, how they are weighted in the learning processes, modelling also
complex behaviours like non-linearities

Noise, Outliers, Faults detection and Cross-Calibration

Mixing data and physics can help in smoothing out noise and outliers, which typically do not obey the physical
equations. Moreover, multi-diagnostics approach can be used for cross-calibration purposes.

Direct Modelling

In modelling, experiments and diagnostics are used to validate numerical/theoretical models. Now, data can be
implemented in the simulation process, guiding the models and allow for direct discovery of the parameters.
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@) Outline

2. Physics-Informed Neural Networks (PINNs)

2.1 General Methodology
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©) Deep Neural Networks

A neural network is a mathematical model f
defined by several parameters 0 that given the
features (or inputs) X returns the targets (or
outputs) Y:

Y=f(06,X)

From the universal approximation theorem, we 4 9
can assert that: 3 — — &b
© S
L =
“a sufficiently deep neural network can
approximate any function”
The process to tune the parameters 6 is known |
as trainin _
€ Hidden Layers Output Layer

Good Fellow et al. “Deep Learning” MIT Press, (2016)
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@) Training a Deep Neural Network

Training steps:
* Neural network parameters are
randomly 1nitialized. %
a
* The neural network 1s tested with < g
these parameters, and the outputs are =
used to compute a loss function. E,
5
* The gradient of the loss function with < v
respect to the parameters is calculated. = Parameters Gradient jJill Loss
Update Calculation Function
* The parameters are updated.
Convergence
« Steps 24 are repeated until a Criterium/a met?
convergence criterion is reached. |

Yes, training ends 1
Good Fellow et al. “Deep Learning” MIT Press, (2016)
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('\;) Training a Physics-Informed Neural Network

Physics Grid
(collocation points)

‘e e eee

‘e e eee
‘e e eee

‘e'eeees

Boundary Points
(boundary, initial cond.)

A 4

Diagnostic Points
(local, line-integrated, etc.)

v

v

Automatic
differentiation

Diagnostic

Modelling

Physics Boundary
Loss Loss Loss
| I

Bl Parameters Gradient Total Loss
Update Calculation
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2. Physics-Informed Neural Networks (PINNs)

2.2 Applications to diagnostics

2.2.1. Time-resolved tomography
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@) Time-Resolved Tomography

Line-Integrated Radiation is measured by Reconstructed Emissivity
bolometric cameras (at JET, 24 channels horizontal

and 24 vertical)

Average Emissivity Field ~10°
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@) Time-Resolved Tomography

Regularization is typically based on the spatial
smoothness of emissivity, with smoother fields
expected along magnetic surfaces.

Reg. Equation = (q V”e)z + (a, V, e)?

"

We also aim to enforce temporal smoothness by using a
diffusion equation:

at

The choice of the hyperparameters plays a crucial role
in the quality of the reconstruction.

"

Physics-Informed Neural Networks (PINNs) can

2
de
Reg.Term = <— — DAy — DlAl€>

incorporate incomplete physics equations, with See presentation by Ivan Wyss “Latest Developments of the
parameters (such as diffusion coefficients) automatically Maximum Likelihood Approach to Tomography for both Offline and
inferred by the model. Real Time Investigation of the Total Emission of Radiation”
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Measurements

1
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@ Time-Resolved Tomography
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@; Time-Resolved Tomography

PINN -t =10.2

Test performed on various types of radiations:
* MARFE

e Edge-Localised Modes

* Impurity Accumulations

Average Emissivity Field ~10°

MARFE — Visibile Camera
VIS t=10.2448 s VIS t=10.2848 s

10

Z [m]

R. Rossi et al 2025 Nucl. Fusion 65 036030
https://iopscience.iop.org/article/10.1088/1741-4326/adb3bc
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2. Physics-Informed Neural Networks (PINNs)

2.2 Applications to diagnostics

2.2.2. Muulti-diagnostic profile reconstruction

19 Riccardo Rossi | Sixth IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis



@) Multi-Diagnostic Inversion
\=g

Different diagnostics are used to measure the
same quantity in different regions and in
different ways. How to combine them?

Electron density at JET is measured by:

Interferometer:
Line-integrated density, 8 line of sight

High Resolution Thomson Scattering (HRTS)
Local measurements limited to low field side and
midplane

Lidar
Local measurements, low resolution, mid plane

Interferometer

1 2

HRTS and Lidar

MLTOMOnet
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@) Multi-Diagnostic Inversion
\=g

] . . Reconstructed Density [1 020 m'3] - Reconstructed Density Uncertainty [1 020 m 3]
A unique reconstructed profile that considers both 2 4 2 |
HRTS and interferometric measurements (LIDAR is e _ailiiiiin. | s {0.025
used for test) | N Los
! ! 1 0.02
Uncertainty prediction highlights regions where 05 04 05
different diagnostics say different things: useful for E = 0.015
fault diagnostic detection. N0 "I °
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0.2
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2. Physics-Informed Neural Networks (PINNs)

2.2 Applications to diagnostics

2.2.3. Physics-enhanced denoising
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@) Direct Modelling and Denoising

(Numerical) Case Study

0.75
By using 1.5D transport equations, the evolution of density and
temperature is simulated =~ 05
1. Variable transport coefficients, where the transport coefficient

depends on density and temperature (D(n, T), y(n, T)) 0.25
Once derived the two fields, synthetic diagnostics are used to
simulate tokamak-like measurements.

1. Thomson scattering (local measurement of electron density and

temperature)

2. Interferometer (line-integrated measurement of density) 1
1.5D transport equations for plasma 0.75
1/0 & 0 (V’)+16I‘SO
— == =—— ——[—-S= ~ 05
vilar 200p”) Y TV a0
3 1 (0 &0 5/3 10 5 0.25
| === | (V0T ) + —— “TT|-P=0
ZV'5/3<0t zqnapp)( " )+V’6p<q+2 ) 0

on oT - ~
F'=-DV'{((Vp)?)— = —y V' ((Vp)*)n—
((Vp) >(3p q=—xV'{Vp) >nap p
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@) Multi-Diagnostic Inversion
\=g

Both the fields and the transport coefficients are
reconstructed with high accuracy by combining the
physics equations and the data from synthetic
diagnostics.

ntrue

0.75 0.75

0.25 0.25

0.75 0.75

0.25 0.25

Riccardo Rossi et al. “Direct-Modelling in Nuclear Fusion by
Combining Data-Integration and Physics-Informed Neural
Networks”, Proceedings of International Joint Conference of
Neural Networks (IJCNN2025) Rome, Italy, 2025

D - true 1 D - reconstructed

0.8
0.6

0.4

0.2

0
-1 -0.5 0 0.5 1

P

x - reconstructed

-h

0.8

0.6

0.4

0.2
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@) Modelling-based denoising

The diagnostics, affected by noise, are reconstructed by the PINN without the noise
and are very close to the ideal measurements, implying that the PINN can be used
also for denoising. This feature is ensured by using the physical term in the loss,
which smooths out unphysical phenomena like noise.

1.4 : : 2 : 5
® TS measurements ® TS measurements #® Interferometer
1.2+ Target ] T Target #*— Reconstructed
Reconstructed 15® Reconstructed 4 4
11 i .
| 1 ; /f.'
0.8 'S
c — 1 = - +
=l - T )
0.6} 2 I PP
f{ ie‘ ; 1
04r 05} i/ !f*‘
' 1} Ve 4 B
0.2t = I
0 0 ' :
0 0 02 04 06 08 1

p 7 t

Riccardo Rossi et al. “Direct-Modelling in Nuclear Fusion by Combining Data-Integration and Physics-Informed
Neural Networks”, Proceedings of International Joint Conference of Neural Networks (IJCNN2025) Rome, Italy, 2025
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2. Physics-Informed Neural Networks (PINNs)

2.2 Applications to diagnostics

2.2.4. Multi-diagnostic equilibrium(*)

(*) See presentation by Novella Rutigliano “Physics-Informed
Neural Networks for Multi-Diagnostic Reconstruction in Tokamks”
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3. Conclusions
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@) Conclusions
NS Physics-Informed Neural Networks

Physics-Informed Neural Networks (PINNs) combine physics and for Diagnostics
data-driven methods in a synergistic way, enabling a wide range

7]

of applications. c SL2_ w0

2 %Z§

They provide efficient methods for data denoising and O gg e}

enhanced inverse problem solving by integrating multiple g g‘g E

diagnostics with both data-driven and physics-guided 8 oL @
approaches. P 19 -
2 B= £ =
Overall, PINNs represent a highly promising framework for 6 E—"‘ :é =
bridging computational and experimental physics. Uncertainty hgndhng -g
Muldi-fidelity physics S

However, unleashing their full potential still requires significant
progress on multiple fronts, including Al-related aspects (e.g.,
training strategies, architectures, hyperparameter optimisation),
physical considerations (e.g., equation formulation), and
diagnostic challenges (e.g., uncertainty handling).

Data-guided simulations
Incomplete physics 9
Denoising =

Uncertainty prediction
D
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