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Abstract

Recent progress on the theory, numerical simulations, and experimental observations of Vertical Displacement
Oscillatory Modes (VDOM) in tokamak experiments is reported. VDOM are driven unstable by energetic particles and can
have an impact on plasma disruptions, plasma edge stability and confinement. These modes are a candidate to explain Alfvén-
frequency n=0 modes recently observed on JET, TCV, and MAST-U. The specific types of fast ion distribution functions that
can provide an instability drive for VDOM are discussed. Numerical results obtained by the NIMROD code regarding the
simulation of n=0 modes driven by fast ions are shown.

1. INTRODUCTION

A new type of fast ion driven instability involving axisymmetric modes (toroidal mode number n=0) in
magnetically confined tokamak plasmas was discovered recently [1]. The relevant mode has been dubbed Vertical
Displacement Oscillatory Mode (VDOM). The linear dispersion relation for this mode was obtained analytically
in [1-4]. An estimate of the linear threshold for the destabilization of this mode in terms of critical fast ion density
was discussed in [1]. VDOM oscillate with a relatively high frequency, of the order of the Alfvén frequency based
on the poloidal magnetic field. High-frequency n=0 modes have been observed in recent JET discharges, see e.g.
Fig. 3 of Ref. [5] and Fig. 12 of Ref. [6]. Alpha particle driven n=0 modes have been clearly identified during the
last DT3 campaign on JET [7, 8]. »=0 modes driven by NBI fast ions have been observed on TCV and on MAST-
U [9]. Simple extrapolations and numerical simulations suggest that these modes are likely to be observed also in
future tokamak experiments such as JT-60SA, SPARC, BEST, DTT, and ITER. Since the VDOM instability relies
on gradients of the fast ion distribution in velocity space, unstable VDOM may lead to a faster relaxation of fusion
alpha particles in velocity space, rather than alpha particle radial transport and loss of confinement. In this sense,
unstable VDOM should not pose a real danger for alpha particle confinement in fusion burning plasmas.
Nevertheless, since VDOM are global in nature and can affect the edge plasma region through the production of
current sheets in the vicinity of magnetic X-points of the divertor separatrix [10], they may give rise to an
important coupling between the plasma core, where the fast particle drive is dominant, and the plasma edge, with
consequences on the stability of ELMs and an impact on the plasma dynamics in the divertor region. It has been
conjectured that VDOM may nonlinearly destabilize low-frequency vertical displacements, acting as a trigger for
Vertical Displacement Events (VDE) and disruptions. These considerations motivate further studies of n=0
modes. In this article, our main objective is to review the recent progress in the understanding of VDOM.
Nevertheless, this article will also contain some original work, namely: (i) A discussion (Sec. 3) on the limits of
plasma elongation for stable operation against the vertical instability in the ideal-MHD limit; (ii) Specific types
of fast ion distributions giving rise to a positive drive for n=0 modes (Sec. 5); (iii) New advances on the numerical
simulation of n=0 modes in realistic tokamak geometry taking into account the fast ion drive (Sec. 6).

2. A SHORT REVIEW OF THE ANALYTIC THEORY OF VERTICAL DISPLACEMENT
OSCILLATORY MODES

There are four different types of n=0 modes that are relevant for tokamak plasmas: (i) Global Acoustic Modes
(GAM) [11], which oscillate with a relatively low frequency of the order of the sound wave frequency; Global
Alfvén Eigenmodes (GAE) [12] (GAE); Vertical Displacement Oscillatory Modes (VDOM) [2]; Zero-frequency
Vertical Displacements (VD) [13], which can lead to VDE and disruptions. While the theory of GAM, GAE and
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VD is well developed, VDOM is a relatively new entry. For this reason, this article will be concerned mainly with
the theory and numerical simulations of VDOM.

GAE and VDOM oscillate with a frequency of the order of the poloidal Alfvén frequency. They are both largely
immune to continuum damping. Thus, they are both good candidates to explain the recent experimental
observations of =0 modes mentioned in the Introduction. However, they have different mode structures, and the
mechanisms underlying GAE and VDOM are also different. The GAE exists as a shear Alfvén mode that avoids
continuum damping due to a minimum in the kv, spectrum. Normally, the GAE mode structure undergoes a
rapid variation near the plasma edge, where the minimum of kv, as function of radius occurs, because the safety
factor (q) and the plasma density tend to vary quickly in that region. Thus, GAEs are sensitive to details of q and
of plasma density [12]. By contrast, VDOMs are external modes interacting with currents induced on the nearby
first wall, under conditions of passive wall stabilization of the ideal-MHD vertical instability. The resulting
electromagnetic forces, coupling the plasma current and the induced wall currents, oppose further vertical
movements, causing a global vertical oscillation of the entire plasma column [2].

VDOM and VD are intimately related. A dispersion relation that can treat both VDOM and VD was obtained
analytically in Ref. [2], based on the reduced ideal-MHD model (in the absence of fast ions) and on a simplified
straight-tokamak equilibrium [14] assuming a constant q profile (so to exclude a priori the presence of GAE),
with the plasma bounded by an elliptical flux surface (with a and b the minor and major semi-axes). The plasma
is confined within a resistive wall, which is also taken to be ellipse with semi-axes aw and bw. Confocality is

assumed: bw? — aw? = b? — a%. The dispersion relation is cubic in the complex eigenfrequency y = —iw:
y3+L+ yw§ + R (1)
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where 7, is the resistive wall time, eo=(b*-a®)/(b*+a”) is the ellipticity parameter, éy=x/(1 + k), k = b/a > 1 s
the plasma elongation, D = D(x, b/b,,) is a geometric wall parameter,
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In this dispersion relation, 74 is the poloidal Alfvén time and y,, is the ideal-MHD VD growth rate found in the
no-wall limit, b/b,, — 0, such that also D — 0 (see the next Section for a definition and a more detailed discussion
of the parameter D). When D < 1, VDs are ideal-MHD unstable, growing on the Alfvén time scale, i.e., a few
micro-seconds for typical tokamak parameters. It would be impossible to prevent the rapid growth of a VDE in
that limit. Passive-wall stabilization of the ideal-MHD VD requires D = 1. When this inequality is satisfied, w,
is a real (positive) quantity. For values of D not very close to unity, such that w,~7;*, the relevant regime is
woTy > 1. In that limit, the three roots of dispersion relation (1) are

(1-é9)D . _ 1
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The first two roots in Eq. (3) correspond to VDOM oscillating with a frequency R(w) = +w, (R stand for “real
part”). As we can see from this equation, the VDOM are normally stable normal modes with a damping rate
related to the wall resistivity. However, VDOM can be driven unstable by fast particles, as discussed in Sec. 5.
The third, zero-frequency root correspond to a =0 VD slowly growing on the resistive wall time scale, i.e., a few
milli-seconds for typical tokamak parameters. Since in this regime the VD grows slowly, it can be completely
suppressed by active feedback stabilization. We observe, however, that close to ideal-MHD marginal stability,
i.e., when D is close to unity and the condition w,t, > 1 is not satisfied, the resistive VD can grow much more
rapidly, with a growth rate scaling with a fractional power of wall resistivity [3]. In this regime, the active feedback
stabilization system would no longer be capable of preventing the growth of a VD leading to a VDE.

3.  HOW MUCH ELONGATION IS TOO MUCH ELONGATION?

Let us discuss in more details the criterion D > 1 for the stabilization of the ideal-MHD VD. For the analytic
model introduced in Ref [2, 15] (see also [16]), an expression for the geometric wall parameter is

D(k,b/b,) = f_ﬁ; {1 - [1 _ K}Z: (%)211/2} .
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As pointed out in Sec. 2, this expression assumes confocal ellipses for the plasma boundary and the plasma wall.
It is, therefore, a rather crude approximation of the actual tokamak equilibrium configuration. X-points in a
double-null configuration, lying on a divertor separatrix, are allowed by this approximation [14]. However, the
hot plasma is assumed to extend to an elliptical boundary and not to the magnetic separatrix, so that the X-points
lie either in vacuum or in a cold, halo plasma region (we shall discuss in the next section the consequences of
relaxing this assumption). Also, in a real tokamak experiment, plasma-facing components are often placed inside
the vacuum chamber to ensure passive wall stabilization of the ideal-MHD vertical instability. Bearing in mind
all these caveats, we may still use Eq. (4) to discuss a very relevant question: are there limits on plasma elongation,
such that, for k > k., D falls below unity and vertical displacements become ideal-MHD unstable?
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Fig. 1: Critical elongation, k.,;¢, vs normalized plasma- Fig. 2: The geometric wall parameter D(k, b/b,,) vs
wall distance, b/b,,. When the plasma touches the wall, elongation x for different values of the normalized plasma-
b/by, = 1. wall distance, b/b,,.

The short answer to this question is: no, there are no limits on plasma elongation, if the wall can be placed
sufficiently close to the plasma boundary. This is illustrated by Fig. 1, where we set D (¥, b/b,,) = 1 and we
solved for k,.;; as function of b/bw. As one can see from this figure, k.;; = ©0 when the plasma touches the wall,
b/bw=1. However, some distance must always be allowed between the plasma and the wall. Therefore, in practical
terms, a critical elongation does exist. In Fig. 2, we show D as function of k for different values of 5/b. The stable
domain corresponds to the green region, where D > 1. One can see that for values of b/bw between 0.7 and 0.9,
the critical elongation can vary significantly, from x.;; = 2 to K ;; = 3.7.

As discussed in [3], another important consequence of confocality between the elliptical plasma boundary and the
elliptical wall is that the marginal stability condition, D = 1, corresponds to the situation where the wall intercepts
the X-points. Ideal-MHD stability requires the X-points to lie outside the vacuum chamber. When comparing with
realistic tokamak equilibria, this criterion appears to be somewhat restrictive, as the actual wall in a tokamak
experiment is closer on average to the plasma than the confocal wall assumed in analytic work. Furthermore,
single-null divertor configurations normally have one magnetic X-point inside the vacuum chamber and a second
one outside. Thus, numerical work with more accurate plasma equilibria and wall geometry is required. However,
it appears from this analysis that, for a double-null divertor configuration where both magnetic X-points lie inside
the vacuum chamber, considering the actual wall geometry, the ideal-MHD stability criterion can at best only
marginally be satisfied, which motivates the use of plasma-facing coils inside the vacuum chamber to help
guarantee passive wall stabilization.

The idealized equilibrium [14] used in Refs. [2, 3, 15] and in this article, leading to the Eq. (4) for the geometric
wall parameter D and to the criterion D > 1 for ideal-MHD stability of vertical displacement, is the same
equilibrium used in the pioneering work by Laval et al [16]. If expressed in terms of k and k,, = b,,/a,,, and
keeping in mind the confocality condition, bw? — aw® = b? — a2, the criterion D = 1 becomes

_ K2+1 Kyw—1
- (K—l)z Ky 2 15 (5)
which is consistent with Ref. [16], but corrects a misprint in the widely used book Tokamaks, by J. Wesson (see
Eq. (6.15.1) of Ref. [17]).
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4. IMPACT OF MAGNETIC X-POINTS

The analysis of the previous two sections assumed that the magnetic X-points of the simplified, double-null
equilibrium configuration used for analytic work lie either outside the vacuum chamber, or, if inside, they lie in
vacuum or in a cold, low-density halo plasma region. In reality, for a realistic tokamak divertor configuration, the
hot plasma extends to the magnetic separatrix (the last-closed-magnetic-surface), where the X-points are located.
As discussed in Ref. [10] based on analytic considerations, and shown numerically in Refs. [18], the most likely
consequence is that axisymmetric current sheets localized around the magnetic X-points and extending along the
magnetic separatrix are driven by n=0 perturbation. In Ref. [10] it was concluded that these X-point current sheets,
which become singular with a vanishing width in the ideal-MHD limit, can have a stabilizing effect on vertical
plasma displacements. However, the theory of Ref. [10] lacks consideration of resistive effects, which can resolve
the ideal-MHD singularity, providing a characteristic width for the X-point current sheets. This problem is as yet
unresolved. It is nevertheless a very relevant issue, since these X-points current sheets can have a profound impact
on plasma edge stability (e.g., on the stability of peeling-ballooning modes leading to ELMs); furthermore, they
are likely associated with axisymmetric sheared flows, which can affect the turbulent transport of plasma particles
and energy across the plasma edge and into the open field line region.

Magnetic X-points give rise to singularities in the ideal-MHD limit because the parallel wave-vector operator,
ky, = b -V, where b is the unit vector along the equilibrium magnetic field, vanishes identically for mode number
n=0, since the poloidal component of the equilibrium magnetic field vanishes on the X-points. The resonance
involves the toroidal field lines going through magnetic X-points. Because of this resonant, singular behavior,
ideal-MHD becomes a poor representation of the plasma dynamics for axisymmetric perturbations in the vicinity
of magnetic X-points. A better model involves dissipation and other extended-MHD effects, such as two-fluid
effects, finite ion Larmor radius, and a generalized Ohm’s law. Besides the mentioned analytic work [10], X-point
current sheets have been observed in tokamak experiments [19, 20] and in numerical simulations [18, 21].

5. FAST PARTICLE DRIVE FOR VERTICAL DISPACEMENT OSCILLATORY MODES

GAM, GAE, and VDOM have in common that they can all be destabilized by their resonant interaction with fast
ions, the relevant resonance condition is w = pw, ,, where w, , is the transit/bounce frequency of fast ions with
passing/trapped orbits. GAM, being relatively low-frequency perturbations, can be destabilized by fast ions in the
50-100 keV range, arising, for instance, by Neutral Beam Injection; this energetic-particle-induced GAM, or
EGAM, was first discussed in Ref. [11]. The drives for GAE [5] and for VDOM [1] require instead fast ions with
energy ranging from several 100 keV to a few MeV. Nevertheless, the fast particle drives for all these modes have
an important element in common: since n=0, the part of the perturbed fast ion distribution function that involves
derivates of the equilibrium fast ion distribution, F;, with respect to the toroidal canonical momentum, 0F, /9P,
being multiplied by the toroidal mode number, is absent (see, e.g., Ref. [22]). Thus, a positive drive for n=0
requires bump-on-tail-like equilibrium distribution functions; more specifically, in at least some regions of phase
space, a necessary condition for fast particle destabilization of #»=0 modes is

0Fp,
€

__0Fp A OFp
|, =52, 251, ©)
where € = mv?/2, u = mvi /2B, and A = uB,/€, with B, the on-axis magnetic field. An isotropic distribution
function in velocity space does not depend on the pitch angle variable, A. Thus, the standard, isotropic slowing-
down distribution function for the fast ions, being monotonically decreasing as function of energy, does not satisfy
Eq. (6). This may explain why #»=0 saturated fluctuations are observed in tokamak experiments sometimes only
transiently, for instance after sawtooth crashes [6, 23], or when NBI or ICRF heating is modulated or ramped up
[6, 24], as a fully developed slowing down distribution requires time to form or be recreated, of the order of the
slowing-down time. Two types of anisotropic fast ion distributions worth considering in this context are those
created by Neutral Beam Injection (NBI) and acceleration of ions by ICRF waves. In large tokamaks, one must
use very high injection energies for the beams to penetrate to the central regions of the plasma, in ITER typically
one MeV, and at such energies the pitch angle scattering is very weak. Consequently, in the high energy range,
the distribution function of injected ions will be narrow in the A direction and centred around the A, the A value
at the point of ionisation. For ions injected in the passing regions, focusing on VDOM and using the notations of
Ref. [1], one can find approximate analytical expression for |Y|? and hg,. Armed with these and assuming a delta
function distribution in the A direction, one finds analytically that the n = 0 VDOM instability is driven for A, >
0.4 for ions injected into passing orbits. However, for ions injected in the trapped region the situation is
significantly more complicated, as one can infer from the much stronger variation of both |Y|? and hg, in this
region. This is illustrated in Fig. 3, which shows a full numerical evaluation of the normalised fast particle
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drive, ;,, (as defined in Ref. [25]) for ions injected with different A,. As expected, the instability is driven for
Ay > 0.4 in the passing region. It should be noted that the drive increases strongly as A, moves to the value
corresponding to the trapped passing boundary. It is only near the trapped-passing boundary that the instability is
driven for particles injected into trapped orbits. This is strongly linked to the peak of |Y|? in the trapped region.
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Fig. 3: Normalised VDOM fast particle drive for NBI  Fig. 4: Normalized VDOM fast particle drive )\'h for p =
injected ions as a function of Ay, for a case with a circular 1 (see Eq. (7)), obtained with a distribution functions from
flux surface and € = r/R, = 0.1. The region between the PION simulations of a JET sized plasma with Pgp = 6MW.
two red lines is where a pOSitiVC drive for VDOM can occur.  The red solid line Corresponds to a h]gh field side ICRF
resonance about 30 cm from the magnetic axis, while the
blue dashed line corresponds to a low field side resonance
with a similar distance from the magnetic axis. In this

example A, was evaluated for a flux surface intersecting the
midplane at a radius of around 35 cm.

Energetic ions accelerated by ICRF waves tend to pile up with their A values around A;c = By/Bjc, where the
magnetic field B;cis defined by n;.w.;(Bic) = wic. (nj. is the harmonic number of the ICRF resonance, w; is the
ion cyclotron frequency, and w is the frequency of the injected Ion Cyclotron wave). This means that for ICRF
resonances on the high field, a significant fraction of the ions resonating with the ICRF waves are on trapped
orbits near the trapped-passing boundary. On the other hand, for low field side resonances the ions resonating
with ICRF are typically much farther away from the trapped passing boundary. It turns out that the closeness to
the trapped-passing boundary plays a crucial role for the potential of ICRF accelerated ions to drive VDOMs. To
a large extent, because of the structure of |Y|? /hg, term, the drive of the VDOM by ICRF accelerated ions requires
that the energetic ions are not too far away from the trapped-passing boundary. This is clearly seen in full
simulations of A;,. To illustrate this, the PION code (augmented with a package for better assessing the anisotropy
of the distribution function [25]) has been run for typical parameters of a JET sized plasma with 6MW of ICRF
power. Two cases have been analysed. In the first case, the ICRF resonance was about 30 cm to the low field side
of the magnetic axis, and in the second case around 30 cm to the high field side (as measured in the mid-plane).
The contributions to the normalized fast particle drive A;,. For the two cases from a flux surface with a radius of
approximately 35 cm in the midplane is shown in Fig. 4. As can be seen, ICRF accelerated ions only has potential
to drive the VDOM for high field side resonances.

6. NUMERICAL SIMULATIONS OF VERTICAL DISPLACEMENT OSCILLATORY MODES

The analytic theory of VDOM, developed based on simplified straight-tokamak equilibria and reviewed in Secs
2-5, have been confirmed by numerical simulations in realistic tokamak geometry using the NIMROD code [26].
NIMROD [27] is a 3D, initial value, extended-MHD, linear and nonlinear code, that allows for the treatment of a
low-density, low-temperature “halo” plasma region of varying thickness between the last-closed-flux-surface and
the plasma wall. This is particularly important for the study of VDOM, which, as we have pointed out, are external
plasma modes that rely on the interaction between the shifting plasma current and the induced currents on the
plasma wall. In the first part of this Section, we discuss how VDOM can be recognized in simulations of JET
plasmas, using a version of NIMROD that does not include the kinetic-MHD module for the fast particle drive.

We present original NIMROD simulations of JET discharges produced during the 2023 DT3 campaign, where
high-frequency »=0 fluctuations where observed, as reported in [7].
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These experimental observations
are particularly relevant, because
they indicate for the first time that
n=0 modes are clearly driven by
fusion alpha particles and not by
other types of energetic particles
produced by either NBI or ICRF. In
the second part of this Section, we
present  preliminary numerical
results of n=0 VDOM driven
unstable by fast particles having a
bump on-tail distribution function,
based on a newly developed
kinetic-MHD module implemented
in NIMROD.

If the fast particle drive is absent,
the question that comes to mind: is
how to recognize a stable normal
mode with an initial value code?
After all, given an initial condition
representing a generic perturbation,
all sorts of stable normal modes as
well as continuum Alfvén quasi-
modes are excited. If a particular
normal mode is to be identified, it
must be driven somehow to finite
amplitude, so that its perturbed
fields dominate over the sea of all
the other stable plasma fluctuations.
The procedure that we follow was
clearly explained in Ref. [26]. In
essence, after an initial transient,
Fast Fourier Transform (FFT) is
employed to analyse the temporal
behaviour of the plasma response in
specified positions inside the
plasma. Normally, the FFT exhibits
one or more peaks at particular
frequency values. However, the
FFT spectrum may be different for
different plasma positions.

Examples of FFT spectra are shown in Figs. 5 and 6, using

(c)

p a realistic JET equilibrium. When a normal mode is

present, FFT spectra coming from different parts of the
plasma peak and are synchronized around a particular
frequency, as shown in Fig. 5a. We then used a forced

oscillator mimicking the injection of a wave from an

external antenna to resonate with the peak frequency,

(d)

O

e Wrorcea = 217 kHz. The magnetic energy grows to finite
amplitude and then saturates, as shown in Fig. 5c. By

contrast, when the VDOM is absent, the FFT spectra are

Q

not synchronized, as shown if Fig. 6a. Using forced
oscillations at any of the peaks shown in Fig. 6a will not

lead to a growing and saturated magnetic energy, as shown

#104408. (a)
scan; (b) Radial

in Fig. 6b. The contour plots of the normal perturbed flow
are not as neat as those corresponding to a normal mode,
as shown in Fig. 6c, and they change in time. Having
elucidated how we can identify the presence, frequency

and mode structure of a VDOM in numerical simulations
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even in the absence of the fast particle drive, we now turn to simulations of VDOM in JET discharge #104408
from the last DT3 campaign [7, 8]. With an ideal conducting wall placed at the separatrix, NIMROD finds a mode

growth rate - Vinermai = 3.5 x 106 m/s ~ «
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Fig. 8: Plot of the linear growth rate as Fig. 9: Contours of the normal Fig. 10: Contours of the fast particle
function of the shifted Maxwellian bump- component of the plasma flow density, n,.
on-tail (with vy 0, =3.5€6m/2). velocity.

which can be either a GAE or a VDOM. To distinguish between the two, we have performed scans in the density
pedestal gradient as well as in the plasma-wall distance. The results are shown in Fig. 7. As the steepness of the
pedestal density gradient increases, the frequency is observed to decrease. As the wall is moved away from the
separatrix, the frequency of the n=0 mode decreases. A realistic value for the wall-separatrix normalised distance
in the relevant JET experiments is 0.25, for which NIMROD finds the frequency w = 185 kHz. These results are
in fair agreement with experimental observations and lend support to the interpretation of the mode at JET as a
VDOM. A more detailed comparison and analysis is left for a future publication.

Finally, we present preliminary numerical results of 7=0 VDOM driven unstable by fast particles having a bump-
on-tail distribution function. We use the hybrid kinetic-MHD module in NIMROD [28] to perform linear
simulations of VDOMs excited by energetic ions. The module adopts a Particle-in-cell method and the 6f method
to linearly push particles and reconstruct the perturbed fast particle distribution function, which is then used to
calculate the fast particle pressure tensor within a standard hybrid kinetic-MHD approach. For this VDOM study,
the energetic particle module has been modified to use a Maxwellian bump-on-tail distribution function
parameterized by its Gaussian width, Viy,ermal, and displacement in parallel velocity of the bump-on-tail, vgp;s:

V42
F, = Cvt_hzermexp <_ 11;}_40 — M) (7)

2
n Vtherm

where B, is the toroidal canonical momentum, ), is one-quarter of the total magnetic flux, and C is a
normalization constant that ensures a prescribed value of the fast particle beta, f,. For the simulations reported
here, we have chosen 8, = 0.018,4p- As an initial demonstration of energetic particle excitation of the VDOM,
we start with JET shot #102371, which was studied in [26]. These linear hybrid kinetic-MHD simulations use 2M
particles and similar NIMROD parameters [26]. Unlike the stable oscillations demonstrated in [26], these
simulations show linear destabilization of the VDOM by energetic particles. The linear modes are identified as
VDOM by their mode structure and oscillation frequency of 184kHz, in agreement with the observations of [26].
Figure 8 shows a plot of the linear growth as function of Vgyif/Viperm- The scan shows a minimum shift is
necessary to bring the distribution into resonance, overcome the damping of the background plasma and excite
the VDOM. As vgis increases, a maximum growth rate occurs when the VDOM resonance (at w =184kHz)
aligns with the maximum gradient, dF;, /0v. The growth rate decreases as the bump-on-tail moves away from the
VDOM resonance. Figure 9 shows the component of the plasma flow velocity, V,,; the m=1 up-down parity in this
contour plot is indicative of the VDOM. Also, the fast particle density, n,, shown in Fig. 10, exhibits an m=1
structure in the core but shifted in poloidal phase with respect to V,. The m=1 core is accompanied by an m=2
structure towards the edge. Note that these contours are snapshots in time and evolve over the VDOM period.

7. CONCLUSIONS

In this article, an overview on the present state-of-the-art on n=0 Vertical Displacement Oscillatory Modes has
been presented. This theory may help with the interpretation of experimental observations of n=0 modes observed
in recent tokamak experiments. VDOM are driven unstable by fast ions but are also closely associated with vertical
displacements that can evolve into VDE and disruptions. We have pointed out that »=0 modes treated within the
framework of ideal-MHD are singular at the magnetic X-points of the divertor separatrix. Resolving the
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singularity by consideration of resistive effects reveals the formation of current sheets localized near the X-points
and extending along the magnetic separatrix. The impact of these current sheets on the stability and turbulent
behaviour of the plasma edge, and more in general, a study of 3D magnetic turbulence at the plasma edge in the
presence of saturated »=0 mode structures and zonal flows, is a natural continuation of this line of research.
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