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Abstract 

The diagnostics used to study the geodesic acoustic modes (GAMs) in tokamaks allow one to detect the GAM spectra 
in details, which have no satisfactory explanations within the framework of standard theory. The self-consistent fluid model is 
developed and successfully applied for the simultaneous simulation of GAMs along with low-frequency zonal flows (ZFs) 
driven by toroidal plasma rotation in tokamak. The linearized model demonstrates the well-known continuous MHD spectrum 
of electrostatic axisymmetric oscillations in toroidally rotating tokamak plasmas. The spectrum contains two independent 
eigenmodes of vastly different frequencies: high-frequency GAM and low-frequency ZF. The nonlinearity results in a much 
richer spectral pattern exhibiting different oscillations that depend on the equilibrium plasma state, its stability and on the 
initial level of fluctuations as well. The performed calculations concern both the linearly stable and unstable ZF with the 
integrals of the motion subject to a control. As a results of calculations, the specific features of the spectra such as GAMs 
modulation, peak splitting, intermittency and other ones observed within tokamak plasma experiments are presented. 

1. INTRODUCTION 

Plasma oscillations, which are almost uniform within the magnetic surface, are the essential part of plasma 
turbulence in tokamaks. They are observed in almost all leading facilities in the form of both geodesic acoustic 
modes (GAMs) and low-frequency zonal flows (ZFs) [1]. The GAM is a predominantly electrostatic oscillation 
at frequency of the order of several tens of kHz, while the frequency of ZF is about or less than several kHz only. 
That is why the conclusive identification of the latter is a challenging task requiring long stationary time sequence 
data [2]. 
 
Early systematic experimental studies of GAMs [3] revealed a number of phenomena, which are not described by 
the standard theory of a continuous GAM spectrum [4]. In particular, the observations showed that the GAM 
amplitude tends to be modulated up to 50 % or more, giving the appearance of signal intermittency with a period 
of a few milliseconds, accompanied by the GAM’s spectral peak frequency shifting. Such a behavior could be 
time-modulation of GAM intensity envelope by a low-frequency ZF. Similar modulation was revealed earlier in 
numerical simulations of Alfvén drift turbulence [5]. Some manifestations of the modulation effect were observed 
later on many other tokamaks – see, e.g., Refs. [6]-[10] – and became the subject of intensive research. 

In this paper, we present and summarize the results of calculations of the non-linear joint dynamics of GAMs and 
ZFs in tokamak plasmas showing its relevance to the experimental observations described above. In contrast to 
[5], the analyzed problem is self-consistent because of exclusive including the interaction of eigenmodes, which 
can be described by ideal MHD equations. The revealed role of ZFs in the formation of final GAMs spectral 
pattern appears to be quite important.   

With no plasma rotation and no viscosity, the ZF is stationary, i.e., has zero frequency. The finite frequency of 
ZF arises due to the “unfreezing” of the entropy function from the magnetic surface. The stationary toroidal plasma 
rotation is considered here as a mechanism for such unfreezing [11], at that the ZF eigenmode can be either 
oscillatory [12] or linearly unstable [13] depending on the distribution of the equilibrium plasma pressure and 
density on the magnetic surface. 
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The simplified model of nonlinear interaction of GAMs and ZFs in toroidally rotating tokamak plasmas was firstly 
suggested in Ref. [14]. The obtained analytical solution has demonstrated the splitting of the spectral peak of the 
GAM as a result of its interaction with the ZF of a given amplitude and frequency [15]. In recent paper [16], the 
nonlinear dynamics of GAM and linearly unstable ZF has been studied self-consistently using the numerical 
simulations. It was shown there that the nonlinearity results in the stabilization of linearly unstable ZF with a 
formation of “saturated” low-frequency mode of finite frequency with a consequent generation of multiple GAM 
side-bands.   

Here we consider a more general picture of zonal flow nonlinear dynamics widely varying the initial conditions 
in the numerical simulations to demonstrate the scope of the process under consideration. We show that in 
different regimes of nonlinear oscillations a lot of experimentally observed characteristics of GAMs spectral 
pattern are reproduced that confirms the applicability of the model to describe the real GAMs. 

2. MODEL 

To describe GAM-ZF nonlinear interaction the conventional electrostatic approximation of the single-fluid ideal 
MHD equations is used: 

ρ �
𝜕𝜕𝐯𝐯
𝜕𝜕𝜕𝜕

+ (𝐯𝐯 ∙ 𝛁𝛁)𝐯𝐯� = −𝛁𝛁𝑝𝑝 +
1
𝑐𝑐

[𝐣𝐣 × 𝐁𝐁],                                                             (1) 

𝜕𝜕ρ
𝜕𝜕𝜕𝜕

+ div(ρ𝐯𝐯) = 0,                                                                                   (2) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ γ𝑝𝑝div(𝐯𝐯) + 𝐯𝐯 ∙ 𝛁𝛁𝑝𝑝 = 0,                                                                     (3) 

div(𝐣𝐣) = 0,                                                                                         (4) 

[𝐯𝐯 × 𝐁𝐁] = 𝑐𝑐𝛁𝛁ϕ.                                                                                    (5) 

In what follows, the axial symmetry for both the equilibrium plasma state and for the perturbations is assumed to 
distinguish the considered types of oscillations from the widest spectrum of plasma turbulence. Standard notations 
for the plasma density ρ, pressure 𝑝𝑝, velocity 𝐯𝐯, current density 𝐣𝐣, and magnetic field 𝐁𝐁 are used; γ = 5/3 is the 
specific heat ratio, 𝑐𝑐 is the speed of light, and the CGS units are used. As it follows from Eq. (5), the electric field 
potential, ϕ, is essentially a function of the magnetic surface.  

We apply our model to the equilibrium of toroidally rotating plasma in the tokamak with circular concentric 
magnetic surfaces. The magnetic field at the surface of radius 𝑟𝑟 is 𝐁𝐁 = 𝐵𝐵𝑎𝑎/𝑅𝑅�𝑅𝑅𝑎𝑎𝐞𝐞φ + 𝑟𝑟/𝑞𝑞𝐞𝐞θ�. Here 𝐵𝐵𝑎𝑎 is the 
magnetic field on tokamak magnetic axis, 𝑞𝑞 is the safety factor, 𝑅𝑅𝑎𝑎 is the tokamak major radius, 𝑅𝑅 = 𝑅𝑅𝑎𝑎 + 𝑟𝑟 cosθ 
is the distance from the geometrical center of the torus, φ and θ are the toroidal and poloidal angles, 
correspondingly. Rotation velocity is 𝐯𝐯0 = 𝑅𝑅Ω(𝑟𝑟)𝐞𝐞φ, where Ω is the angular frequency. From here and below the 
subscript “0” marks stationary quantities. 

Toroidal rotation results in a poloidal stratification of plasma pressure and density on the magnetic surface. The 
poloidal inhomogeneity relates to the velocity of plasma toroidal rotation as follows: 

𝑝𝑝0 = 𝑝̅𝑝0(𝑟𝑟) �1 +
𝑟𝑟
𝑅𝑅𝑎𝑎

γ𝑀𝑀2cosθ� ,   ρ0 = ρ�0(𝑟𝑟) �1 +
𝑟𝑟
𝑅𝑅𝑎𝑎

γ
α
𝑀𝑀2cosθ�. 

Here 𝑝̅𝑝0, ρ�0 are the averaged values of equilibrium plasma pressure and density on the magnetic surface, 𝑀𝑀 =
Ω/ω𝑠𝑠 is the toroidal Mach number, ω𝑠𝑠 = �γ𝑝̅𝑝0/ρ�0/𝑅𝑅𝑎𝑎, and α is the parameter that describes different types of 
plasma dynamic equilibrium. Below we consider isothermal (α = 1) and isodense (α → ∞) magnetic surfaces. 
We also used here the known [17] ansatz 𝑝𝑝0 = ρ0αΠ, where Π = Π(𝑟𝑟) is a surface function, and suppose that the 
aspect ratio is large, 𝑟𝑟/𝑅𝑅𝑎𝑎 ≪ 1.  

Equations (1)-(5) result in the system of coupled PDEs for the perturbed functions, which describe the plasma 
dynamics taking into account the quadratic nonlinearities in the right-hand sides – see Ref. [14] for the details. In 
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the dimensionless variables 𝑓𝑓(𝑇𝑇 ≡ 𝑡𝑡ω𝑠𝑠, θ) = �ρ� ≡ (ρ − ρ0)𝑞𝑞𝑅𝑅𝑎𝑎/𝑟𝑟ρ�0, 𝑝𝑝� ≡ (𝑝𝑝 − 𝑝𝑝0)𝑞𝑞𝑅𝑅𝑎𝑎/𝑟𝑟γ𝑝̅𝑝0, 𝑣𝑣� ≡ 𝑞𝑞(𝑣𝑣|| −
𝑣𝑣||0)/𝑟𝑟ω𝑠𝑠 � and 𝐴𝐴(𝑇𝑇) ≡ 𝑐𝑐𝑐𝑐𝑐𝑐(ϕ − ϕ0)/𝑑𝑑𝑑𝑑/𝑟𝑟𝐵𝐵𝑎𝑎ωs the system has the form:   

𝜕𝜕ρ�
𝜕𝜕𝜕𝜕

+
1
𝑞𝑞
𝜕𝜕𝑣𝑣�
𝜕𝜕θ

+ 𝐴𝐴sinθ �2 +
γ
α
𝑀𝑀2� =

𝐴𝐴
𝑞𝑞
𝜕𝜕ρ�
𝜕𝜕θ

,                                                         (6) 

𝜕𝜕𝑝𝑝�
𝜕𝜕𝜕𝜕

+
1
𝑞𝑞
𝜕𝜕𝑣𝑣�
𝜕𝜕θ

+ 𝐴𝐴sinθ(2 + 𝑀𝑀2) =
𝐴𝐴
𝑞𝑞
𝜕𝜕𝑝𝑝�
𝜕𝜕θ

,                                                           (7) 

𝜕𝜕𝑣𝑣�
𝜕𝜕𝜕𝜕

+
1
𝑞𝑞
𝜕𝜕𝑝𝑝�
𝜕𝜕θ

+ 2𝐴𝐴𝐴𝐴sinθ =
𝐴𝐴
𝑞𝑞
𝜕𝜕𝑣𝑣�
𝜕𝜕θ

,                                                               (8) 

π
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− � sinθ�𝑝𝑝� + 𝑀𝑀𝑣𝑣� +
𝑀𝑀2

2
ρ��𝑑𝑑θ = 0.                                                  (9) 

The index “||” marks the velocity component along the magnetic field.  

Note that quantities {ρ� , 𝑝𝑝�, 𝑣𝑣� } are poloidally-dependent functions; they will be presented below in the form of 
cosθ and sinθ-harmonics (with corresponding subscripts c and s), while 𝐴𝐴 is a magnetic surface function only. 
Equations (6)-(9) imply all eigenfunctions be strongly localized 𝛿𝛿-functions of plasma radius referring to the 
modes of the continuous spectrum with ω = ω(𝑟𝑟). 

Without the nonlinear terms in the RHSs of Eqs. (6)-(9), the considered system reduces to the well-known MHD 
dispersion law of zonal flows in toroidally rotating plasmas [17]: 
 

ω4 − ω2ω𝑠𝑠
2 �2 +

1
𝑞𝑞2

+ 4𝑀𝑀2 +
γ𝑀𝑀4

2α
�+ ω𝑠𝑠

4 γ − α
α

𝑀𝑀4

2𝑞𝑞2
= 0.                            (10) 

The higher root of the dispersion equation (10) gives the GAM frequency, and the lower one – the frequency of 
ZF. The ZF is aperiodically unstable (ω2 < 0) at α > γ and has a finite frequency in the opposite case. If the 
stationary toroidal plasma rotation tends to zero, the GAM-branch reduces to the standard expression [4] 
𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺
2 (𝑀𝑀 → 0) = 𝜔𝜔𝑠𝑠2(2 + 1/𝑞𝑞2), while the ZF transforms into the stationary one: 𝜔𝜔𝑍𝑍𝑍𝑍

2 (𝑀𝑀 → 0) = 𝜔𝜔𝑠𝑠2𝑀𝑀4(γ − α)/
2α(1 + 2𝑞𝑞2) → 0. 

For the numerical simulation, it is important that Eqs. (6)-(9) possess at least two exact integrals, namely 

𝐼𝐼1 = 𝐴𝐴2 + 0.5(𝑣𝑣�𝑠𝑠2 + 𝑣𝑣�𝑐𝑐2 + 𝑝𝑝�𝑠𝑠2 + 𝑝𝑝�𝑐𝑐2) + 𝑞𝑞𝑀𝑀2(𝑝𝑝�𝑐𝑐 − ρ�𝑐𝑐), 

𝐼𝐼2 = 0.5(𝑝𝑝�𝑠𝑠 − ρ�𝑠𝑠)2 + 0.5(𝑝𝑝�𝑐𝑐 − ρ�𝑐𝑐)2 −
𝑞𝑞𝑀𝑀2

α
(𝑝𝑝�𝑐𝑐 − ρ�𝑐𝑐)(γ − α). 

The check of their conservation provides a convenient tool for monitoring the numerical calculation procedure, 
especially in the case of linearly unstable system. All calculations presented below have passed this verification. 

3. RESULTS 

Due to the nonlinearity, Eqs. (6)-(9) describe a variety of oscillation regimes, the onset of which depends both on 
the equilibrium parameters (namely, 𝑞𝑞, 𝑀𝑀 and α) and on the initial conditions. Below we consider two types of 
equilibria: the stable one with isothermal magnetic surfaces (α = 1), and the unstable one with isodense magnetic 
surfaces (α = 1000), which linear stage is characterized by the exponential growth of ZF amplitude. We also 
choose 𝑞𝑞 = 3. We prescribe the certain initial values of the perturbed electric field for GAM and ZF, 
𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺0 ≡ 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡 = 0) and 𝐴𝐴𝑍𝑍𝑍𝑍0 ≡ 𝐴𝐴𝑍𝑍𝑍𝑍(𝑡𝑡 = 0), and calculate the initial values of {ρ� , 𝑝𝑝�, 𝑣𝑣� } using the known linear 
ratios of these fluctuations to the value of 𝐴𝐴. Note that |𝐴𝐴| = 1 means that the angular frequency of the poloidal 
plasma rotation due perturbed electric field reaches the “longitudinal” sound frequency, ω𝑠𝑠/𝑞𝑞.  
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The presented below examples of the calculated GAM-ZF dynamics obeying Eqs. (6)-(9) are in a correlation with 
the experiments described in the literature. In the calculations the time interval for spectral analysis is chosen 
around 600𝑇𝑇𝑠𝑠 (𝑇𝑇𝑠𝑠 = 2𝜋𝜋/ω𝑠𝑠) being slightly adjusted to “catch” several total periods of the low-frequency mode. 
The Cauchy problem for Eqs. (6)-(9) is solved by the Runge-Kutta method of the 4th order, and the amplitude 
spectra are analyzed using the Fast Fourier Transform (FFT) procedure with a sampling frequency 15ω𝑠𝑠. 

3.1. Stable equilibrium with iso-thermal magnetic surfaces 

In the linearly stable equilibrium both the GAM and the ZF have finite frequency and their amplitudes are mainly 
determined by the initial conditions. In this case the nonlinear interaction of the modes results in the appearance 
of GAMs side-bands (satellites) on ω𝐺𝐺𝐺𝐺𝐺𝐺 ± ω𝑍𝑍𝑍𝑍 frequencies. As the amplitude of the ZF increases, the higher 
side-bands appear. An increase in the toroidal Mach number leads to an up-shift in frequency of ZF, which 
improves the spectral resolution and makes the fine structure of the spectrum more distinguishable. 
 
3.1.1. GAM side-bands 

To demonstrate the appearance of GAM side-bands we choose the regime characterized by the moderate velocity 
of stationary toroidal plasma rotation with 𝑀𝑀 = 0.3,  substantial initial amplitude of GAM, 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺0 = 0.5, and small 
amplitude of ZF, 𝐴𝐴𝑍𝑍𝑍𝑍0 = 0.02. The frequencies of GAM and ZF linear modes calculated from Eq. (10) are ω𝐺𝐺𝐺𝐺𝐺𝐺 =
1.57ω𝑠𝑠 and  ω𝑍𝑍𝑍𝑍 = 0.01ω𝑠𝑠.  

In Fig. 1a the time evolution of the electric field fluctuations, 𝐴𝐴(𝑡𝑡), is shown. The time signal is a superposition 
of high-frequency GAM oscillations slightly modulated by the low-frequency ZF. Since  ω𝐺𝐺𝐺𝐺𝐺𝐺 ≫ ω𝑍𝑍𝑍𝑍, there is a 
lot of GAM oscillations during the period of ZF.  

  
FIG. 1. Time evolution of electric field 𝐴𝐴(𝑡𝑡) (a) and the corresponding spectrum of amplitude (b) in the regime of low 

modulation. Here 𝑀𝑀 = 0.3, 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺0 = 0.5,  𝐴𝐴𝑍𝑍𝑍𝑍0 = 0.02. The length of the FFT analyzed signal is 561𝑇𝑇𝑠𝑠. 
 
The spectral pattern of the above signal is shown in Fig. 1b. Two vastly separated peaks are clearly distinguished: 
the main peak near the GAM frequency, and the small peak at the near-zero ZF frequency. The high-frequency 
activity consists of a set of close equidistant peaks divided by the frequency of ZF. The most pronounced peak 
corresponds to  ω𝐺𝐺𝐺𝐺𝐺𝐺 and the amplitudes of the side-bands decrease with the distance from it.  

An increase in the initial amplitude of the ZF leads to an increase in the number of GAM side-bands and to a 
change in the structure of the spectrum that we will discuss in the next subsection. 

 
3.1.2. “Two-humped” structure of GAM spectrum 

Now let us consider the equilibrium with enhanced velocity of stationary plasma rotation, 𝑀𝑀 = 0.6.  At higher 𝑀𝑀, 
the ZF frequency increases ~𝑀𝑀2 that results in the enhancement of the spectral resolution of the signal. At 𝑀𝑀 =
0.6, the frequencies of GAM and ZF are ω𝐺𝐺𝐺𝐺𝐺𝐺 ≈ 1.91ω𝑠𝑠 and  ω𝑍𝑍𝑍𝑍 ≈ 0.036ω𝑠𝑠.  In Fig. 2 the spectra of amplitudes 
are shown for the regimes with 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺0 = 0.5 and two different values of the ZF initial amplitude: 𝐴𝐴𝑍𝑍𝑍𝑍0 = 0.02 (Fig. 
2a) and 𝐴𝐴𝑍𝑍𝑍𝑍0 = 0.1 (Fig. 2b).  

(a) (b) 
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FIG. 2. Spectra of amplitudes of A with different 𝐴𝐴𝑍𝑍𝑍𝑍0 : 𝐴𝐴𝑍𝑍𝑍𝑍0 = 0.02 (a); 𝐴𝐴𝑍𝑍𝑍𝑍0 = 0.1 (𝑏𝑏). Here 𝑀𝑀 = 0.6, 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺0 = 0.5. The 
length of the FFT analyzed signal is 582𝑇𝑇𝑠𝑠 for (a) and 615𝑇𝑇𝑠𝑠 for (b). 

 
In both cases, the presence of low-frequency ZF results in the appearance of GAM side-bands. Comparing Figs. 
2a and 2b, we see that an increase in the initial amplitude of ZF, and, consequently, the rise of nonlinearity, leads 
(i) to an increase in the amplitude of the GAM side-bands, (ii) to the growth of their number, and (iii) to the 
formation of a two-humped spectrum structure with a minimum near the original GAM frequency. Such pattern 
of GAM spectrum, consisting of close equidistant harmonics, was clearly demonstrated in the experiments on 
tokamak ASDEX Upgrade – cf. Fig. 3b with Fig. 10a in Ref. [3]. 

3.2. Unstable equilibrium with isodense magnetic surfaces 

As we have already mentioned, the equilibrium with isodense magnetic surfaces is linearly unstable with respect 
to the perturbations of ZF-type, which have zero frequency and finite growth rate ~𝑀𝑀2. In the framework of linear 
model, it results in the unbounded exponential growth of such perturbations. The nonlinearity results in the 
saturation of the amplitude of the linearly unstable ZF and its transition into a stable low-frequency mode. The 
further interaction of this mode with GAMs results in the formation of GAM side-bands and fine structure of 
spectral pattern.   

3.2.1. Interaction of GAM with saturated ZF 

Consider the case of linearly unstable system at 𝑀𝑀 = 0.3 choosing 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺0 = 0.2,  𝐴𝐴𝑍𝑍𝑍𝑍0 = 0.02. The corresponding 
time evolution of the electric field fluctuations and their spectrum are shown in Fig. 3. Besides the linear 
instability, the signal demonstrates strictly periodic oscillations. They contain both the high-frequency component 
of the GAM and the saturated ZF mode, which appears as a low-frequency modulation of the envelope. Note that 
the depth of the modulation exceeds the initial value of ZF amplitude that is happen due to its growth during the 
linear stage of evolution. 

  
FIG. 3. Time evolution of electric field 𝐴𝐴(𝑡𝑡) (a) and the corresponding spectrum of amplitude (b) in the linearly unstable 

system. Here 𝑀𝑀 = 0.3, 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺0 = 0.5,  𝐴𝐴𝑍𝑍𝑍𝑍0 = 0.02. The length of the FFT analyzed signal is 570𝑇𝑇𝑠𝑠. 
 
In the low-frequency area of the oscillation spectrum, the stabilized ZF activity mainly appears at frequency 
0.01ω𝑠𝑠; the second harmonic 0.02ω𝑠𝑠 and the higher ones are also seen. The GAM spectrum is affected by the 
low-frequency mode in a manner similar that we discussed in the previous section: the multiply side-bands of 
GAM separated by the frequency of stabilized ZF are generated, which creates a broadband GAM peak. The 
complex frequency composition of ZF results in a complex pattern of GAM spectrum as well, in particular, it 
becomes asymmetric with respect to the original GAM frequency ω𝐺𝐺𝐺𝐺𝐺𝐺 = 1.57. 

(a) (b) 

(a) (b) 
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3.2.2. GAM bursts 

The linear instability results in the formation of ZF saturated mode even if the initial amplitude of ZF is zero. This 
is demonstrated by the following calculation at 𝑀𝑀 = 0.4, 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺0 = 0.2 and 𝐴𝐴𝑍𝑍𝑍𝑍0 = 0.0. Due to the rather strong 
stationary rotation, and, as a consequence, the sufficient growth rate of linearly unstable ZF, the amplitude of the 
saturated ZF mode turns out to be significant and even comparable with the amplitude of the GAM. This is evident 
from the depth of the envelope modulation in Fig. 4a. The corresponding Fourier spectrum – Fig. 4b – 
demonstrates complex broadband activity both in the regions of low and high frequencies. The frequency of the 
main harmonic of saturated ZF is  0.009ω𝑠𝑠, at that, the amplitudes of the higher harmonics of the ZF are also 
significant. The GAM activity is complex: GAM spectrum has the fine structure, which is a set of equidistant 
side-bands separated exactly by the main harmonic of the saturated ZF. It has an integral two-humped structure, 
which is a result of interaction with broadband ZF activity. The maximum of the GAM spectrum occurs at the 
frequency near the linear original GAM frequency ω𝐺𝐺𝐺𝐺𝐺𝐺 = 1.66, while the spectrum is not centered relative to it.   

  
FIG. 4. Time evolution of electric field 𝐴𝐴(𝑡𝑡) (a) and the corresponding spectrum of amplitude (b) in the linearly unstable 
system with zero initial amplitude of ZF. Here 𝑀𝑀 = 0.4, 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺0 = 0.2,  𝐴𝐴𝑍𝑍𝑍𝑍0 = 0.0. The length of the FFT analyzed signal 

is 645𝑇𝑇𝑠𝑠. 
 
Returning to Fig 4а, note that the signal of the electric field in the considered regime is strictly periodic, but it is 
sufficiently anharmonic. Moreover, the amplitudes of fluctuations vary strongly in time, so that their modulations 
are about 50 %.  In the spectrogram with a power-cut-off, this is manifested in the appearance of GAM bursts, 
which occur in correlation with the activity of ZF – see. Fig. 5.  Experimental observations of GAM bursts – see, 
e.g., Refs. [3, 7, 8]. 
 

 

FIG. 5. Spectrogram of plasma electric field fluctuations, A, showing GAM bursts. Here 𝑀𝑀 = 0.4, 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺0 = 0.2,  𝐴𝐴𝑍𝑍𝑍𝑍0 =
0.0. 

 

(a) (b) 
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4. CONCLUSIONS 

The model of nonlinear interaction of GAM and ZF eigenmodes demonstrates typical features of the 
experimentally observed GAM spectra that shows the relevance of the model to the physics of axisymmetric 
electrostatic oscillations in tokamak plasmas. It is the influence of the low-frequency ZFs on GAMs that is the 
mechanism of the periodic modulation and the intermittency of the latter ones. Thus, non-linearity is a significant 
factor to understand and to interpret the peculiarities of GAM’s spectra.  
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