ILGISONIS and SOROKINA

CONFERENCE PRE-PRINT

NONLINEAR SELF-CONSISTENT DYNAMICS OF
GEODESIC ACOUSTIC MODES AND ZONAL FLOWS
IN TOROIDALLY ROTATING TOKAMAK PLASMAS

V.1. ILGISONIS
State Atomic Energy Corporation ROSATOM
Moscow, Russian Federation

E.A. SOROKINA

National Research Centre “Kurchatov Institute”
Moscow, Russian Federation

Email: Sorokina EA@nrcki.com

Abstract

The diagnostics used to study the geodesic acoustic modes (GAMs) in tokamaks allow one to detect the GAM spectra
in details, which have no satisfactory explanations within the framework of standard theory. The self-consistent fluid model is
developed and successfully applied for the simultaneous simulation of GAMs along with low-frequency zonal flows (ZFs)
driven by toroidal plasma rotation in tokamak. The linearized model demonstrates the well-known continuous MHD spectrum
of electrostatic axisymmetric oscillations in toroidally rotating tokamak plasmas. The spectrum contains two independent
eigenmodes of vastly different frequencies: high-frequency GAM and low-frequency ZF. The nonlinearity results in a much
richer spectral pattern exhibiting different oscillations that depend on the equilibrium plasma state, its stability and on the
initial level of fluctuations as well. The performed calculations concern both the linearly stable and unstable ZF with the
integrals of the motion subject to a control. As a results of calculations, the specific features of the spectra such as GAMs
modulation, peak splitting, intermittency and other ones observed within tokamak plasma experiments are presented.

1. INTRODUCTION

Plasma oscillations, which are almost uniform within the magnetic surface, are the essential part of plasma
turbulence in tokamaks. They are observed in almost all leading facilities in the form of both geodesic acoustic
modes (GAMs) and low-frequency zonal flows (ZFs) [1]. The GAM is a predominantly electrostatic oscillation
at frequency of the order of several tens of kHz, while the frequency of ZF is about or less than several kHz only.
That is why the conclusive identification of the latter is a challenging task requiring long stationary time sequence
data [2].

Early systematic experimental studies of GAMs [3] revealed a number of phenomena, which are not described by
the standard theory of a continuous GAM spectrum [4]. In particular, the observations showed that the GAM
amplitude tends to be modulated up to 50 % or more, giving the appearance of signal intermittency with a period
of a few milliseconds, accompanied by the GAM’s spectral peak frequency shifting. Such a behavior could be
time-modulation of GAM intensity envelope by a low-frequency ZF. Similar modulation was revealed earlier in
numerical simulations of Alfvén drift turbulence [5]. Some manifestations of the modulation effect were observed
later on many other tokamaks — see, e.g., Refs. [6]-[10] — and became the subject of intensive research.

In this paper, we present and summarize the results of calculations of the non-linear joint dynamics of GAMs and
ZFs in tokamak plasmas showing its relevance to the experimental observations described above. In contrast to
[5], the analyzed problem is self-consistent because of exclusive including the interaction of eigenmodes, which
can be described by ideal MHD equations. The revealed role of ZFs in the formation of final GAMs spectral
pattern appears to be quite important.

With no plasma rotation and no viscosity, the ZF is stationary, i.e., has zero frequency. The finite frequency of
ZF arises due to the “unfreezing” of the entropy function from the magnetic surface. The stationary toroidal plasma
rotation is considered here as a mechanism for such unfreezing [11], at that the ZF eigenmode can be either
oscillatory [12] or linearly unstable [13] depending on the distribution of the equilibrium plasma pressure and
density on the magnetic surface.
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The simplified model of nonlinear interaction of GAMs and ZF's in toroidally rotating tokamak plasmas was firstly
suggested in Ref. [14]. The obtained analytical solution has demonstrated the splitting of the spectral peak of the
GAM as a result of its interaction with the ZF of a given amplitude and frequency [15]. In recent paper [16], the
nonlinear dynamics of GAM and linearly unstable ZF has been studied self-consistently using the numerical
simulations. It was shown there that the nonlinearity results in the stabilization of linearly unstable ZF with a
formation of “saturated” low-frequency mode of finite frequency with a consequent generation of multiple GAM
side-bands.

Here we consider a more general picture of zonal flow nonlinear dynamics widely varying the initial conditions
in the numerical simulations to demonstrate the scope of the process under consideration. We show that in
different regimes of nonlinear oscillations a lot of experimentally observed characteristics of GAMs spectral
pattern are reproduced that confirms the applicability of the model to describe the real GAMs.

2. MODEL

To describe GAM-ZF nonlinear interaction the conventional electrostatic approximation of the single-fluid ideal
MHD equations is used:
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In what follows, the axial symmetry for both the equilibrium plasma state and for the perturbations is assumed to
distinguish the considered types of oscillations from the widest spectrum of plasma turbulence. Standard notations
for the plasma density p, pressure p, velocity v, current density j, and magnetic field B are used; y = 5/3 is the
specific heat ratio, c is the speed of light, and the CGS units are used. As it follows from Eq. (5), the electric field
potential, ¢, is essentially a function of the magnetic surface.

We apply our model to the equilibrium of toroidally rotating plasma in the tokamak with circular concentric
magnetic surfaces. The magnetic field at the surface of radius r is B = B, /R(Raeqj +7r/ qee). Here B, is the
magnetic field on tokamak magnetic axis, q is the safety factor, R, is the tokamak major radius, R = R, + r cosf
is the distance from the geometrical center of the torus, ¢ and 6 are the toroidal and poloidal angles,
correspondingly. Rotation velocity is vy = RQ(r)e,,, where Q is the angular frequency. From here and below the
subscript “0” marks stationary quantities.

Toroidal rotation results in a poloidal stratification of plasma pressure and density on the magnetic surface. The
poloidal inhomogeneity relates to the velocity of plasma toroidal rotation as follows:
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Here py, p, are the averaged values of equilibrium plasma pressure and density on the magnetic surface, M =
Q/wy is the toroidal Mach number, wg = /YPy/Po/Ra, and a is the parameter that describes different types of
plasma dynamic equilibrium. Below we consider isothermal (¢ = 1) and isodense (a — ©0) magnetic surfaces.
We also used here the known [17] ansatz p, = pgIl, where I1 = I1(r) is a surface function, and suppose that the
aspect ratio is large, /R, < 1.

Equations (1)-(5) result in the system of coupled PDEs for the perturbed functions, which describe the plasma
dynamics taking into account the quadratic nonlinearities in the right-hand sides — see Ref. [14] for the details. In
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the dimensionless variables f(T = tws,8) ={p = (p — po)qRa/TPo» B = (P — Po)qRa/TYPo, ¥ = q(v) —
V)0)/TWs } and A(T) = cqd(¢p — db)/dr/TB,ws the system has the form:
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The index ““||” marks the velocity component along the magnetic field.

Note that quantities {p, §, ¥} are poloidally-dependent functions; they will be presented below in the form of
cos0 and sinB-harmonics (with corresponding subscripts ¢ and s), while A is a magnetic surface function only.
Equations (6)-(9) imply all eigenfunctions be strongly localized §-functions of plasma radius referring to the
modes of the continuous spectrum with w = w(r).

Without the nonlinear terms in the RHSs of Egs. (6)-(9), the considered system reduces to the well-known MHD
dispersion law of zonal flows in toroidally rotating plasmas [17]:

1 M* — o M*
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(10)

The higher root of the dispersion equation (10) gives the GAM frequency, and the lower one — the frequency of
ZF. The ZF is aperiodically unstable (w? < 0) at a >y and has a finite frequency in the opposite case. If the
stationary toroidal plasma rotation tends to zero, the GAM-branch reduces to the standard expression [4]
w2 (M - 0) = w?(2 + 1/q?), while the ZF transforms into the stationary one: w%z(M — 0) = w?M*(y — «)/
2a(1+ 2q%) - 0.

For the numerical simulation, it is important that Egs. (6)-(9) possess at least two exact integrals, namely

I = A% + 0.5(0f + 0¢ + pZ + p2) + gM?* (B — pe),

o L qM?
I, = 0.5(Fs — ps)® + 0.5(F; — pc)* — T(pc Py — ).

The check of their conservation provides a convenient tool for monitoring the numerical calculation procedure,
especially in the case of linearly unstable system. All calculations presented below have passed this verification.

3. RESULTS

Due to the nonlinearity, Egs. (6)-(9) describe a variety of oscillation regimes, the onset of which depends both on
the equilibrium parameters (namely, g, M and o) and on the initial conditions. Below we consider two types of
equilibria: the stable one with isothermal magnetic surfaces (a = 1), and the unstable one with isodense magnetic
surfaces (o = 1000), which linear stage is characterized by the exponential growth of ZF amplitude. We also
choose q = 3. We prescribe the certain initial values of the perturbed electric field for GAM and ZF,
A4y = Agan(t = 0) and A%, = A, (t = 0), and calculate the initial values of {p, B, ¥ } using the known linear
ratios of these fluctuations to the value of A. Note that |A| = 1 means that the angular frequency of the poloidal
plasma rotation due perturbed electric field reaches the “longitudinal” sound frequency, wg/q.
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The presented below examples of the calculated GAM-ZF dynamics obeying Eqs. (6)-(9) are in a correlation with
the experiments described in the literature. In the calculations the time interval for spectral analysis is chosen
around 6007 (T; = 2m/w;) being slightly adjusted to “catch” several total periods of the low-frequency mode.
The Cauchy problem for Egs. (6)-(9) is solved by the Runge-Kutta method of the 4" order, and the amplitude
spectra are analyzed using the Fast Fourier Transform (FFT) procedure with a sampling frequency 15w.

3.1. Stable equilibrium with iso-thermal magnetic surfaces

In the linearly stable equilibrium both the GAM and the ZF have finite frequency and their amplitudes are mainly
determined by the initial conditions. In this case the nonlinear interaction of the modes results in the appearance
of GAMs side-bands (satellites) on w¢4py + wzr frequencies. As the amplitude of the ZF increases, the higher
side-bands appear. An increase in the toroidal Mach number leads to an up-shift in frequency of ZF, which
improves the spectral resolution and makes the fine structure of the spectrum more distinguishable.

3.1.1. GAM side-bands

To demonstrate the appearance of GAM side-bands we choose the regime characterized by the moderate velocity
of stationary toroidal plasma rotation with M = 0.3, substantial initial amplitude of GAM, A2 4,, = 0.5, and small
amplitude of ZF, A2 = 0.02. The frequencies of GAM and ZF linear modes calculated from Eq. (10) are wg 4y =
1.57w and wzr = 0.01w;.

In Fig. 1a the time evolution of the electric field fluctuations, A(t), is shown. The time signal is a superposition
of high-frequency GAM oscillations slightly modulated by the low-frequency ZF. Since wgap > wyp, there is a
lot of GAM oscillations during the period of ZF.
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FIG. 1. Time evolution of electric field A(t) (a) and the corresponding spectrum of amplitude (b) in the regime of low
modulation. Here M = 0.3, A% ) = 0.5, A%z = 0.02. The length of the FFT analyzed signal is 561Ts.

The spectral pattern of the above signal is shown in Fig. 1b. Two vastly separated peaks are clearly distinguished:
the main peak near the GAM frequency, and the small peak at the near-zero ZF frequency. The high-frequency
activity consists of a set of close equidistant peaks divided by the frequency of ZF. The most pronounced peak
corresponds to w¢,4y and the amplitudes of the side-bands decrease with the distance from it.

An increase in the initial amplitude of the ZF leads to an increase in the number of GAM side-bands and to a
change in the structure of the spectrum that we will discuss in the next subsection.

3.1.2. “Two-humped” structure of GAM spectrum

Now let us consider the equilibrium with enhanced velocity of stationary plasma rotation, M = 0.6. At higher M,
the ZF frequency increases ~M? that results in the enhancement of the spectral resolution of the signal. At M =
0.6, the frequencies of GAM and ZF are wg,y = 1.91wg and wzr = 0.036w,. In Fig. 2 the spectra of amplitudes
are shown for the regimes with A% ,,, = 0.5 and two different values of the ZF initial amplitude: A% = 0.02 (Fig.
2a) and A%, = 0.1 (Fig. 2b).
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FIG. 2. Spectra of amplitudes of A with different AYz: Ap = 0.02 (a); A% = 0.1 (b). Here M = 0.6, A2 5, = 0.5. The
length of the FFT analyzed signal is 582T; for (a) and 615T for (b).

In both cases, the presence of low-frequency ZF results in the appearance of GAM side-bands. Comparing Figs.
2a and 2b, we see that an increase in the initial amplitude of ZF, and, consequently, the rise of nonlinearity, leads
(i) to an increase in the amplitude of the GAM side-bands, (ii) to the growth of their number, and (iii) to the
formation of a two-humped spectrum structure with a minimum near the original GAM frequency. Such pattern
of GAM spectrum, consisting of close equidistant harmonics, was clearly demonstrated in the experiments on
tokamak ASDEX Upgrade — cf. Fig. 3b with Fig. 10a in Ref. [3].

3.2. Unstable equilibrium with isodense magnetic surfaces

As we have already mentioned, the equilibrium with isodense magnetic surfaces is linearly unstable with respect
to the perturbations of ZF-type, which have zero frequency and finite growth rate ~M?2. In the framework of linear
model, it results in the unbounded exponential growth of such perturbations. The nonlinearity results in the
saturation of the amplitude of the linearly unstable ZF and its transition into a stable low-frequency mode. The
further interaction of this mode with GAMs results in the formation of GAM side-bands and fine structure of
spectral pattern.

3.2.1. Interaction of GAM with saturated ZF

Consider the case of linearly unstable system at M = 0.3 choosing A2 ,,, = 0.2, A%z = 0.02. The corresponding
time evolution of the electric field fluctuations and their spectrum are shown in Fig. 3. Besides the linear
instability, the signal demonstrates strictly periodic oscillations. They contain both the high-frequency component
of the GAM and the saturated ZF mode, which appears as a low-frequency modulation of the envelope. Note that
the depth of the modulation exceeds the initial value of ZF amplitude that is happen due to its growth during the
linear stage of evolution.
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FIG. 3. Time evolution of electric field A(t) (a) and the corresponding spectrum of amplitude (b) in the linearly unstable
system. Here M = 0.3, A2 1,y = 0.5, A%z = 0.02. The length of the FFT analyzed signal is 570Ts.

In the low-frequency area of the oscillation spectrum, the stabilized ZF activity mainly appears at frequency
0.01wg; the second harmonic 0.02w, and the higher ones are also seen. The GAM spectrum is affected by the
low-frequency mode in a manner similar that we discussed in the previous section: the multiply side-bands of
GAM separated by the frequency of stabilized ZF are generated, which creates a broadband GAM peak. The
complex frequency composition of ZF results in a complex pattern of GAM spectrum as well, in particular, it
becomes asymmetric with respect to the original GAM frequency wgap = 1.57.
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3.2.2. GAM bursts

The linear instability results in the formation of ZF saturated mode even if the initial amplitude of ZF is zero. This
is demonstrated by the following calculation at M = 0.4, A%,,, = 0.2 and A% = 0.0. Due to the rather strong
stationary rotation, and, as a consequence, the sufficient growth rate of linearly unstable ZF, the amplitude of the
saturated ZF mode turns out to be significant and even comparable with the amplitude of the GAM. This is evident
from the depth of the envelope modulation in Fig. 4a. The corresponding Fourier spectrum — Fig. 4b —
demonstrates complex broadband activity both in the regions of low and high frequencies. The frequency of the
main harmonic of saturated ZF is 0.009wq, at that, the amplitudes of the higher harmonics of the ZF are also
significant. The GAM activity is complex: GAM spectrum has the fine structure, which is a set of equidistant
side-bands separated exactly by the main harmonic of the saturated ZF. It has an integral two-humped structure,
which is a result of interaction with broadband ZF activity. The maximum of the GAM spectrum occurs at the
frequency near the linear original GAM frequency w4y = 1.66, while the spectrum is not centered relative to it.
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FIG. 4. Time evolution of electric field A(t) (a) and the corresponding spectrum of amplitude (b) in the linearly unstable
system with zero initial amplitude of ZF. Here M = 0.4, A% 4,; = 0.2, A%z = 0.0. The length of the FFT analyzed signal
is 645T;.

Returning to Fig 4a, note that the signal of the electric field in the considered regime is strictly periodic, but it is
sufficiently anharmonic. Moreover, the amplitudes of fluctuations vary strongly in time, so that their modulations
are about 50 %. In the spectrogram with a power-cut-off, this is manifested in the appearance of GAM bursts,

which occur in correlation with the activity of ZF — see. Fig. 5. Experimental observations of GAM bursts — see,
e.g., Refs. [3, 7, 8].

Frequency [ws]
N

0 114 228 342 456 570
t[T]

FIG. 5. Spectrogram of plasma electric field fluctuations, A, showing GAM bursts. Here M = 0.4, A2 4, = 0.2, A%z =
0.0.
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4. CONCLUSIONS

The model of nonlinear interaction of GAM and ZF eigenmodes demonstrates typical features of the
experimentally observed GAM spectra that shows the relevance of the model to the physics of axisymmetric
electrostatic oscillations in tokamak plasmas. It is the influence of the low-frequency ZFs on GAMSs that is the
mechanism of the periodic modulation and the intermittency of the latter ones. Thus, non-linearity is a significant
factor to understand and to interpret the peculiarities of GAM’s spectra.
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