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Abstract 

The prediction, mitigation, and avoidance of disruptions are critical prerequisites for ensuring the safe operation of 

future fusion reactors. While machine learning-based disruption prediction techniques have achieved high accuracy in recent 

years, their application to a new device demands strong extrapolation capability across parameter regimes. This capability is 

essential to maintain robust algorithm performance as the operational space of the device expands, while it is also a main 

shortcoming for most machine learning techniques. This study evaluates the extrapolation capability of disruption prediction 

algorithm using experimental data from early campaigns on the HL-3 tokamak, yielding three key findings. Firstly, the 

extrapolation performance of the standard deep learning algorithm is not good. However, the Predict-First Neural Network 

(PFNN) significantly enhances the performance. Secondly, the algorithm's accuracy exhibits distinct variations when 

extrapolating based on electromagnetic parameters (plasma current Ip, toroidal magnetic field Bt, safety factor q95) compared 

to energy-related parameters (stored energy We, normalized beta βN). Finally, after rigorously accounting for the impact of 

parameter regime extrapolation and adjusting the algorithm deployment strategy, deep learning proved effective in 

protecting the device during HL-3's high-current and high-beta commissioning phases. This study provides valuable 

experience for implementing disruption prediction algorithms on new devices and is expected to offer practical reference for 

the initial operation of future fusion facilities like ITER. 

1. INTRODUCTION 

Disruption, an abrupt termination of plasma discharge triggered by the development of instabilities or loss of 

control, poses a significant threat to future fusion reactors. The resulting consequences, including thermal loads, 

electromagnetic forces, and runaway electron beams, are predicted to reach unacceptable levels in reactor-scale 

devices[1]. Therefore, reliable prediction, coupled with effective mitigation and avoidance strategies, is imperative 

to minimize disruption damage[2, 3]. 

Machine learning, particularly deep learning, has demonstrated considerable promise in disruption prediction over 

recent years[4-9]. These techniques have achieved not only high accuracy but have also been reinforced by 

complementary tools tailored for the application in future devices, such as transfer learning, interpretability 

analysis, and anomaly detection[10-12]. Significant efforts are underway to integrate these methodologies into a 

comprehensive, systematic solution for disruption management in future fusion power plants. 

The HL-3 tokamak, the largest tokamak currently operated in China, is designed to operate within a plasma current 

(Ip) range of 2.5-3 MA. Since its initial plasma in 2020[13], HL-3 has progressively pushed towards higher 

performance parameters, recently achieving H-mode operation at 1.5 MA plasma current[14]. As it steadily 

approaches its design goals, HL-3 inevitably encounters the issue of disruption risks. This makes it an ideal "test 

bed" for disruption prediction algorithms, providing invaluable experience for future reactor operation. 

The development of disruption prediction algorithms for HL-3 is described in our previous paper[15], where a 

critical issue is noticed. Previous cross-machine disruption prediction studies often treated a "future device" as an 

environment with scarce training data but a relatively stable underlying data distribution. This differs subtly from 

the reality of a newly constructed device like HL-3. Such a device accumulates substantial data during its initial 

low-parameter commissioning phase; however, its operational parameter space continuously expands. This 

dynamic expansion presents a unique challenge for disruption prediction algorithms, demanding strong 

extrapolation capabilities. While approaches like scenario adaptive learning have been proposed to address aspects 
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of this challenge[16, 17], there remains a notable lack of direct, quantitative performance evaluation under conditions 

of parameter space expansion. This study aims to address this crucial gap. 

The remainder of this paper is structured as follows. Section 2 describes the experimental dataset used and details 

its partitioning into training and testing sets, guided by HL-3's high-parameter commissioning strategy. Section 3 

outlines the algorithm architectures and compares the extrapolation capabilities of baseline model and the Predict-

First Neural Network (PFNN). It specifically analyzes performance differences when extrapolating based on 

electromagnetic configuration-related parameters (Ip, Bt, q95) versus energy-related parameters (We, βN). Building 

on these insights, Section 4 details the deployment and application of the refined algorithms during HL-3's high-

current and high βN commissioning, presenting demonstrative results. Finally, Section 5 summarizes the key 

findings and conclusions. 

2. DATASET DESCRIPTION 

2.1  HL-3 operational space 

HL-3 has conducted five experimental campaigns to date. After excluding discharges with a maximum plasma 

current below 100 kA, a total of 3819 shots were available for this study. Throughout these campaigns, HL-3's 

primary commissioning objectives focused on enhancing plasma current, normalized beta, ion temperature, and 

the fusion triple product. This study mainly concentrates on investigating the extrapolation of algorithms across 

plasma current and normalized beta. 

Figure 1 depicts the distribution of maximum Ip versus average Bt across the entire dataset, alongside the 

distribution of maximum Ip versus maximum βN. The figure reveals that a substantial number of shots were 

dedicated to progressively ramping Ip towards 1.6 MA. Additionally, significant experimental effort was directed 

at achieving high βN discharges at plasma current around 300 kA, 500 kA, and 700 kA. 

 

Figure 1 The diagram of HL-3's operational parameter space, which illustrates two of the device's primary commissioning 

objectives, as indicate by blue arrow. Firstly, enhancing the plasma current (Ip) up to 1.6MA. Secondly, enhancing 

normalized beta (βN) at specific plasma current levels, namely 300 kA, 500 kA, and 700 kA.  

2.2  Dataset organization 

Reflecting HL-3's two primary commissioning paths, high Ip and high βN operation, the dataset is partitioned based 

on maximum Ip, average Bt, minimum q95, maximum We, and maximum βN by shot. This partitioning enables the 

examination of algorithm performance when extrapolating along each individual parameter dimension. 

Figure 2 presents the statistical distributions of these five parameters across the full dataset. For each parameter, 

the dataset was divided into four segments. The largest segment was allocated for training and validation, while 

the remaining three segments served as distinct test sets. Crucially, the parameter ranges covered by the test sets 
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are completely different from those in the validation set. This design isolates the impact of operational regime 

shifts on algorithm performance. 

 

Fig 2 The distribution histograms of key plasma parameters across the dataset. The horizontal axis represents the value of 

each parameter, while the vertical axis indicates the number of experimental shots within each bin. Logarithmic scaling is 

applied to the vertical axis to effectively visualize sparsely populated regions within the parameter space. 

For nearly every parameter, the shots within the parameter ranges targeted for extrapolation are significantly 

sparser. To mitigate the confounding effect of sample size on model performance, the partitioning thresholds for 

all five parameters were carefully set to achieve an similar shot distribution across the four segments. The exact 

shot counts and parameter thresholds are detailed in Table 1. 

Beyond the partitioning scheme designed primarily for research purposes, the disruption prediction algorithm was 

also deployed operationally during HL-3's 1.6 MA Ip commissioning and high βN commissioning for risk 

mitigation. In these practical scenarios, adhering to the principle of maximizing the accuracy of the deployed 

version, all available data were utilized for training and validation. The corresponding dataset information is given 

in Section 4. 

Table 1 The parameter scope and number of shots within each subdatasets. 

Parameter Range Number of shots Dataset ID 

Ip (kA) 0~520 2570 1 

520~700 748 2 

700~1000 281 3 

1000~1700 220 4 

Bt (T) 0~1.55 2652 1 

1.55~1.7 769 2 

1.7~1.78 253 3 

1.78~2.2 141 4 

q95 4.5~10 2495 1 

4~4.5 870 2 

3.7~4 292 3 

1.8~3.7 159 4 

We (kJ) 0~160 2545 1 

160~220 871 2 

220~300 252 3 

300~700 148 4 
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βN 0~1.5 2485 1 

1.5~2.1 800 2 

2.1~2.5 324 3 

2.5~5 207 4 
 

2.3  Label of disruption 

This study adopts the data labeling strategy established in our prior research: 

— Data within 30 ms prior to disruption are labelled as "disruptive". 

— Data between 30 ms and 200 ms prior to disruption are assigned a "fuzzy" label. This accounts for the inherent 

variability in the timing of disruption precursors across different shots. A hard transition could introduce 

wrong labels and negatively impact model training. 

— Data more than 200 ms prior to disruption and data from non-disruptive shots are labelled as " non-disruptive". 

It is important to note that the HL-3 dataset contains a significant number of shots where the Disruption Mitigation 

System (DMS) are triggered. Labelling these shots presents a significant challenge. Since it is hard to definitively 

determine whether the plasma was in a normal state or already exhibiting disruption precursors before the DMS 

injection. To address this issue, this study truncates the final 200 ms of data from these shots. The remaining data 

from these shots is then treated as non-disruptive shots. This approach partially mitigates the labelling ambiguity 

problem. Effectively utilizing data involving DMS remains an important open question for future research, 

particularly in the context of future fusion reactors. 

3. ALGORITHMS AND EXTRAPOLATION TESTING RESULTS 

3.1 Predict-first neural network 

Regarding the input signal selection and neural-network structure, this study follows the methodology established 

in our previous work[15]. The implementation details are omitted here for brevity. This section focuses specifically 

on the Predict-first Neural Network (PFNN) architecture central to our investigation. 

 

Fig 3 the overall architecture of the PFNN model. 
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Figure 3 illustrates the overall architecture of the PFNN model. The core concept of PFNN involves a two-stage 

process. Firstly, a predictive model is trained to forecast the temporal evolution of plasma current, magnetic 

configuration, and plasma density in 20ms. Secondly, the difference between the simulated evolution and the 

actual experimental result is then computed. This simulation-experiment discrepancy serves as the primary input 

feature for the subsequent disruption predictor. It is important to note that when extrapolating to new operational 

regimes, the plasma evolution predictor itself may also suffer from performance degradation due to the unfamiliar 

parameter space. However, this limitation can be effectively addressed by fine-tuning the predictor using 

experimental data from 1~2 shots within the new target regime, as shown in [18]. 

3.2 Analysis on extrapolation testing results 

Figure 4 presents the performance of both the baseline model and the PFNN algorithm across various test datasets. 

The performance is evaluated by area under receiver-operator characteristic curve (ROC curve), namely AUC, as 

in most related research. Two principal conclusions can be inferenced. 

 

Fig 4 the AUC of both the baseline model(blue) and the PFNN algorithm(red) across various datasets. 

Enhanced extrapolation capability of PFNN: The PFNN architecture significantly enhances the extrapolation 

capability of the disruption prediction algorithm. While the baseline algorithm exhibits a rapid decline in accuracy 

when extrapolating to new regimes, the PFNN maintains substantially stable performance over a wider range or 

demonstrates a markedly slower degradation rate. This phenomenon arises because the baseline model 

predominantly captures correlations between numerical values of plasma parameters and disruption risk. Such 

correlations are often highly regime-specific and prone to failure under significant parameter shifts. In contrast, 

PFNN shifts the focus towards monitoring the discrepancy between predicted plasma evolution and actual 

experimental measurements. Provided the evolution predictor remains reliable, this discrepancy-based approach 

offers a more universally applicable indicator of underlying instability across diverse operational regimes. On the 

other hand, the effectiveness of PFNN's approach inherently depends on the extrapolation capability of the plasma 

evolution predictor itself. Our related research suggests that fine-tuning this evolution predictor for a new regime 

appears significantly more tractable than adapting the disruption predictor directly. Furthermore, this evolution 

predictor could also be implemented using physical simulation codes. 
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Relationship between algorithm performance and extrapolated parameter: The degradation pattern of 

algorithm performance exhibits a marked distinction when extrapolating based on electromagnetic parameters 

versus energy-related parameters. For electromagnetic parameters (Ip, Bt, q95), performance undergoes a 

continuous decline as the extrapolation distance increases. While the PFNN architecture supresses the rate of this 

decline, it does not eliminate the downward trend. For energy-related parameters (We, βN), performance remains 

relatively stable within a certain operational range surrounding the training domain. However, beyond a critical 

extrapolation threshold, a sharp degradation occurs. The reason could be related to the transition of energy 

confinement mode when We
 and βN are enhanced. This contrast might help future devices design a safer parameter 

ramp-up paths. 

4. REAL-TIME IMPLEMENTATION 

Building on the insights from previous analysis, the PFNN algorithm is deployed with carefully staged 

extrapolation steps from established operational regimes in HL-3. And it has enabled successful prediction and 

mitigation of most disruptions during HL-3's recent high-parameter campaigns. This section presents online 

disruption prediction and protection results from two key commissioning scenarios, high βN operation and high Ip 

operation at 1.6 MA. 

4.1 High beta disruption prediction and mitigation 

HL-3's high βN commissioning are focused on during the last experimental campaign, which starts from Shot 9285. 

Prior to this campaign, the maximum βN in the available development dataset was 3.3. A disruption prediction 

algorithm trained on this pre-campaign data achieved an AUC of 0.977. During high βN operation, the algorithm's 

real-time output is used to trigger the Massive Gas Injection (MGI) system for disruption mitigation. 

 

Fig 5 Demonstration of close-loop disruption prediction and mitigation in HL-3, during a high βN discharge (shot 12478). 
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Figure 5 illustrates a representative experimental discharge. Following neutral beam injection (NBI) initiation at 

t=1.0 s, the plasma experiences significant perturbation due to the substantial momentum input from the NBI, 

resulting in plasma position oscillations. During this initial phase, the predicted disruptivity exhibits a modest 

increase, albeit of low amplitude. Subsequently, as the plasma configuration stabilizes, the βN progressively 

increases with absorbed heating power, reaching values approaching 4. Concurrently, the βN signal indicates the 

development of MHD instabilities, hindering further βN increase. After t=1.4 s, the specific plasma pressure begins 

to decline, accompanied by further confinement deterioration. Consequently, the predicted disruption risk rises, 

triggering the MGI system and successfully mitigating the impending disruption. 

Beyond this representative case, the system operated continuously during HL-3 discharges #12456 to #12509. 

Excluding invalid shots (e.g., failed discharges and plasma-less commissioning pulses), the closed-loop system 

executed in 22 valid discharges. Correct prediction output was achieved in 21 of these cases, both for disruptive 

and non-disruptive shots, yielding an overall reliability of 95.5%.  

4.2 High current disruption prediction and soft-landing 

The 1.6 MA plasma current operation on HL-3 was implemented during the final phase of its third experimental 

campaign, encompassing shots 6800 to 6985. Prior to this phase, the accumulated dataset comprised 2,163 shots, 

with a maximum plasma current of only 1.15 MA. A disruption prediction algorithm trained on this dataset 

achieved an AUC of 0.982 within its non-extrapolated operational regime and was deployed for real-time 

disruption warnings. During this phase, warning signals were not used to trigger MGI. Instead, a soft-landing 

strategy was implemented to rapidly ramp down the plasma current. This approach ensured minimal perturbation 

to wall condition between shots, thereby preserving the integrity of the commissioning schedule. 

 

Fig 6 PFNN predicted the high-field side impurity source induced disruption and triggered soft landing 
control during Shot 6893 

Figure 6 illustrates a closed-loop experimental shot where the algorithm successfully triggered soft landing control 

in response to a disruption precursor caused by impurity accumulation. Without intervention, the disruption would 

have occurred near 1.4 MA. The proactive mitigation reduced the disruption current to 0.9 MA, significantly 

reduced its severity. 

5. SUMMARY 

This study investigated the extrapolation capability of deep learning disruption prediction algorithms on HL-3, a 

device currently in its performance ramp-up phase. As expected, standard disruption prediction techniques exhibit 

significant performance degradation when extrapolating to new operational regimes, while PFNN effectively 

mitigates this degradation, enhancing extrapolation robustness. On the other hand, algorithm performance 

degrades differently when extrapolating along electromagnetic parameters versus energy-related parameters. This 

difference may inform the development of safer parameter escalation pathways for future fusion reactors. 

800ms：normal status

1050ms：abnormal status
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Leveraging these insights, HL-3 successfully implemented closed-loop disruption prediction and mitigation for 

high βN and high current scenarios. These demonstrated capabilities provide valuable operational experience 

expected to significantly inform the commissioning strategies of future fusion devices like ITER. 
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