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Abstract 

We present a systematic numerical investigation of magnetohydrodynamic stability of the ideal infernal-kink instability 

in tokamak plasmas with both negative triangularity (neg-D) shaping and negative central shear for the equilibrium safety 

factor profile. The q-profile choice is motivated by the need to form the internal transport barrier in the neg-D plasmas, 

which otherwise struggle to establish an edge barrier. The calculations show that the infernal-kink mode is generally more 

unstable in neg-D plasmas than in their positive-triangularity (pos-D) counterparts. This is mainly due to less favourable (or 

even unfavourable) average magnetic curvature near the radial location of the minimum safety factor (    ) as compared to 

the pos-D configuration. The larger Shafranov shift associated with the neg-D shape helps the mode stabilization but is not 

sufficient to overcome the destabilizing effect due to bad curvature. Strong poloidal mode coupling, seeded by toroidicity, 

elongation, triangularity, account for the slight shift with respect to that predicted by the analytic theory of the peak location 

of the computed mode growth versus     . 

1. INTRODUCTION 

The performance in the core plasma can be enhanced and the non-inductive bootstrap current can be increased 

due to the presence of the edge transport barrier (ETB), while simultaneously reducing the external heating 

power requirements, thereby improving the economy of fusion energy [1-3]. Therefore, operation in H-mode is 

the dominant choice for most present tokamak devices, which allows for good confinement performance and 

higher operating parameters [4].  

However, the operation of H-mode still presents a multitude of challenges [5-7], including: (i) the strong 

interaction between the plasma and plasma facing components (PFCs) ascribed to the presence of the ETB; (ii) 

the inherent conflict between the damage limit of PFCs and the threshold for the transition between L-mode and 
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H-mode; (iii) intricacies in controlling detached regimes; and (iv) triggering of the so-called type-I ELMs that 

lead to the exhaust issues.   

Recent experimental results obtained from DIII-D [8-10] and TCV [11-15], featuring negative triangularity 

shapes (neg-D), present a promising approach to address the aforementioned challenges associated with edge 

transport barrier in plasma [11, 16-19]. The absence of a strong ETB in neg-D plasms allows access to an ELM-

free regime but still with good confinement [20,21]. However, further careful investigation is required to 

comprehend the MHD instability in these neg-D configuration plasmas. 

The negative central shear (NCS) is often associated with, and facilitates the formation of, the internal 

transport barrier (ITB), which in turn offers one promising scenario for the advanced tokamak (AT) concept 

based on conventional pos-D shape [22-25]. A NCS scenario with ITB may also improve confinement in neg-D 

plasmas. Indeed, as plasma triangularity vanishes toward the magnetic axis, the NCS configuration may be 

achievable in the plasma core of neg-D discharges where shaping differences between pos-D and neg-D plasmas 

are minimal [26,27]. 

However, an equilibrium with NCS is known to be prone to the infernal, sometimes also referred to as the 

quasi-interchange, instability as has been frequently studied for plasmas with pos-D shapes [28-33]. This type of 

instability often occurs when the minimum q-value (    ) is close to a rational number, and when there is a 

sufficient pressure drive at the radial location of      [19,28,34]. Onset of an infernal mode may complicate 

plasma operation during the current ramp-up phase (as      evolves), or produce the so-called long-lived mode 

(LLM) as observed in experiments [35,36]. Furthermore, as will be reported in this work, this instability can 

also couple to an external kink mode in plasmas with relatively high (global) pressure, resulting in what we refer 

to here as the infernal-kink mode, with the associated eigenmode sharing characteristics of both the infernal and 

kink instabilities. The main purpose of the present work is to provide a systematic investigation of the infernal-

kink instability in plasmas with NCS and with neg-D shape. For comparison, we will also consider pos-D 

plasmas with otherwise similar radial profiles for the equilibrium quantities, such as the safety factor and the 

plasma pressure.  

2. RESEARCH METHODS AND EQUILIBRIUM CONSTRUCTION 

The MARS-F code [37] is used to calculate the linear stability of pos-D and neg-D plasmas. This code 

solves the linearized resistive MHD equations in toroidal geometry and converts plasma perturbations into an 

eigenvalue problem. The vacuum region is modeled by solving equations       and      , in the 

differential form, for the perturbed magnetic field b. Since the Green’s function approach is not utilized, the 

vacuum region is always finite in MARS-F. At the computational boundary, an ideal-wall boundary condition is 

always imposed.  

Knowing roughly the onset conditions for the infernal instability, we generate a series of NCS equilibria in 

a semi-analytic manner as described below for the purpose of systematic investigation, for plasmas with both 

pos-D and neg-D shapes.  

The radial profiles of the plasma equilibrium pressure   and the surface averaged toroidal current density 

     are analytically defined by the following formulations, which are similar to the [38]. Here, the radial 

profiles of   and      are specified with free parameters          and         , respectively.  
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here    is the equilibrium poloidal flux, where      and      denote the location at the magnetic axis 

and at the plasma boundary, respectively. Another two parameters are defined as   
   

    , with fixed 

      .   is the Heaviside step function. In this work, the pedestal structure is not taken into account, since 

we focus on the infernal-kink mode with NCS structure in the centre plasma region.  

The plasma boundary shape is again analytically specified, in terms of the cylindrical coordinates R and Z 

and with a set of free parameters    ,      , 
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where   is the poloidal angle. R and Z are normalized here by the major radius    associated with the 

geometric center of the plasma column.  In order to describe the plasmas shape with the single-null-like 

boundary shape (associated with parameters    and   ), the plasma shape is divided into the upper and lower 

half-places denoted by    and   . The parameter    defines the inverse aspect ratio of the plasma,    is the 

elongation,    and    determine the triangularity of the upper and lower plasma boundary shape, respectively.  

In this work, we only focus on the symmetric shape, therefore,   denotes the shape triangularity,        .  

Based on Eq. (3-5), with fixed the shape triangularity at       and considering the negative central 

magnetic field shear (the radial location of      is at          ), an equilibrium is carried out. The radial 

profiles of the safety factor is plotted in Fig. 1(a) and denoted by red curves, as well as the plasma boundary 

shape as shown in Fig. 1(b). All control parameters are summarized in Table 1.  

However, in order to clearly investigate the effect of the shape triangularity   on the MHD mode 

stability, the whole radial profiles of the safety factor and normalized equilibrium pressure are fixed, as well as 

the value of       , with varying the shape triangularity. To achieve this, we have to introduce additional 

changes to the radial profile (6) for specifying the plasma toroidal current density  

⟨  ̂⟩  ⟨  ⟩  *  
    

 ((  )
   

   
 )

  
 

(  )
  
   

+    
                    (6) 

where   
        are free parameters of this model. For a given radial profile of the safety factor, the radial 

profiles of the current are modified by specifying   
  parameters. All parameters for several examples with 

varying the shape triangularity for -0.4 to 0.5 are summarized in Table 2.   

The above analytic specification of the plasma boundary shape and the radial profiles for the plasma 

pressure and current density provides sufficient input data for numerical solution of the fixed-boundary Grad-

Shafranov equation, resulting in self-consistent equilibria satisfying the MHD force balance. We referee to these 

as semi-analytic equilibria, which give us the basis for perform stability analysis of the infernal-kink mode 

reported below while varying the plasma shape. 

We mentioned that a (fixed) plasma boundary, not the external equilibrium coil currents, is specified as 

the input to our equilibrium solver CHEASE [39]. The MARS-F stability calculations on the other hand assume 

the free-boundary condition and extend into the outer vacuum region.  

 
Fig 1. A series of equilibria with varying triangularity   of the plasma boundary shape from        to 0.5 while fixing 

the safety factor profile and the N(=2) value, showing (a) radial profiles of the safety factor, as well as (b) plasma boundary 

shapes. Here       
    with    being the normalized equilibrium poloidal magnetic flux. Vertical dashed lines in (a) 

indicate the radial location of rational surfaces associated with the n=1 perturbation.  

Table 1. Parameters   ,    and    from Eqs. (3-5), for specifying radial profiles of the equilibrium pressure, the surface-

averaged toroidal current density and the plasma boundary shape, respectively, assuming the radial location of      at 

          as shown by the red curve in Fig. 1.  
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# 

quantities 
1 2 3 4 5 6 

    1 1.5    

    1.8 2.9 65 2.22 4.85 

   0.25 1.6 -- -- 0 1 

Table 2. Parameters     from Eq. (6), for specifying radial profiles of the surface-averaged toroidal current density 

assuming different values of the plasma boundary triangularity between -0.5 and 0.5.  

          
    

    
    

    
    

  

-0.5 1 0 0 0 0 0 

-0.3 0.99 0.9 18 2.502 2.9 -0.033 

-0.1 0.99 0.9 18 2.493 2.9 -0.022 

0.1 0.99 0.9 16 2.48 2.9 0.035 

0.3 1.04 0.9 16 2.48 2.8 0.133 

0.5 1.0 0.9 -10 2.55 2.6 0.275 

 
3. EFFECT OF TRIANGULARITY ON INFERNAL-KINK MODE 

In this section, we focus on the n=1 toroidal mode. Because the instability that we consider here often contains 

external kink component, for which the wall stabilization plays a significant role, we will compare a free-

boundary case without wall and a fixed-boundary case where an ideal conducting wall is placed at the plasma 

boundary.  

First, in the no-wall boundary condition, we also fix the entire radial profile for the equilibrium safety 

factor (with the each radial location of     ) while varying the plasma triangularity. For example, the case as 

shown in Fig. 1, the radial location of      is fixed at 0.6. The equilibrium global pressure is also fixed at 

    . 

Since the infernal instability - both the mode location and growth rate – also depends on the radial location 

of     , we vary this parameter as well. For this purpose, a set of new equilibria (Fig. 2(a)) are generated 

following the same procedure as the cases shown in Fig. 1.  We vary       in a relatively large range of [0.1, 

0.6] while fixing the      value to be close to 2 (the global pressure parameter is also fixed at      as 

before). Note that for each of the q-profile shown in Fig. 2(a), we also scan the triangularity parameter from -0.5 

to 0.5. For the case         , is motivated by the earlier experimental results with positive triangularity and 

with a large central current hole [40-42]. This yields a scan of the infernal-kink stability in the 2D parameter 

space of (       ).  

Figure 2(b) reports the MARS-F computed mode growth/damping rate in the aforementioned 2D 

parameter space. In general, the growth rate of the infernal-kink is non-monotonic with increasing   at a given 

     . A stable domain, enclosed by the black curve in Fig. 2(b), appears in this 2D parameter space, when 

     is located sufficiently further away from the magnetic axis. Note that the stable window occurs still only 

for pos-D shaped plasmas. The robustness of the ideal infernal-kink instability poses a MHD limitation to the 

neg-D scenario, if the latter is to be operated in the NCS regime. 

In order to gain physics insight into the destabilization effect of the infernal-kink mode due to the neg-D 

shape, we consider two key equilibrium quantities associated with the shaping, that affect the low-n MHD 

instability. One is the Shafranov shift and the other the averaged magnetic curvature. For the infernal-kink type 

of mode which is partly driven by the plasma current and partly by the plasma pressure, and for equilibria with 

the same safety factor profile and the same global beta, the aforementioned two factors are the primary 

equilibrium quantities dictating the instability [43, 44].  

In this work, the normalized Shafranov shift      of the magnetic axis is                    with 

                   The Shafranov shift increases as the plasma boundary changes more towards the neg-

D shape. Note again that this primarily a shaping effect since we fix the global plasma pressure. Since 

Shafranov shift is typically stabilizing for the MHD modes, the trend in this work does not explain the 

destabilization effect of the infernal-kink in neg-D plasmas.  

On the other hand, in a tokamak geometry, the favorable average magnetic curvature effect is found to be 

stabilizing for the tearing and interchange modes [45].  The average curvature effect is often measured in terms 

of the Mercier Index    [44], which we evaluate at the      radial location for infernal mode. Because    is 
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inversely proportional to the local magnetic shear                 [46], and hence approaches infinity at 

the      location for an NCS equilibrium, we examine instead the asymptotic quantity      which remains 

finite at the magnetic shear reversal point.  

Note that a negative value of    implies the stabilizing effect for the tearing and interchange modes in 

tokamaks. In this work thus clearly quantifies the bad average curvature effect associated with the neg-D shape 

of the plasma, which is intuitively understandable since the equilibrium magnetic field lines tend to stay longer 

near the low-field side of the torus with a neg-D shape. This bad curvature effect, indicated by small negative or 

even positive values of     , destabilizes the infernal-kink mode as shown in Fig. 2(b). 

We point out that the eventual mode stability reported in Fig. 2(b) results from the two competing effects, 

i.e. the stabilization due to the Shafranov shift and destabilization due to bad curvature, as the plasma shape 

changes towards more neg-D shapes. This competition is also likely the reason for the stable window for the 

infernal-kink instability shown in Fig. 2(b), as   becomes slightly positive. 

 
Figure 2. (a) Assumed radial profiles of the safety factor while varying the radial location (     ) of      from 0.1 to 0.6 

at fixed     =2.01. Each safety factor profile corresponds to a series of equilibria with the plasma boundary triangularity 

varying from -0.5 to 0.5 as shown in Fig. 1(b). (b) The MARS-F computed growth/damping rate of the n=1 no-wall infernal-

kink instability while varying both the plasma triangularity    and the radial location (     ) of     , with the safety factor 

profiles shown in Fig. 2(a). The black curve indicates marginal stability. The normalized plasma pressure is fixed at      

for all equilibria in this 2D parameter scan. 

    
Figure 3. The MARS-F computed growth rate of the n=1 ideal-wall infernal-kink instability while varying (a) both the 

plasma triangularity    and the radial location (     ) of     , and (b) the correponding parameters      and     , with 

the safety factor profiles shown in Fig. 4. The black curve in Fig. 9(a) indicates marginal stability of the instability. The 

curves in (b) correspond to varying       at fixed   . The normalized plasma pressure is fixed at     .   

The presence of large external kink components in the computed mode, based on the eigenfuncitons, 

complicates the stability analysis for these NCS plasmas with neg-D shape. In what follows, we try to eliminate 

these external kink components by placing an ideal wall at the plasma boundary, with the stability results 

reported in Fig. 3.  

Figure 3(a) plots the MARS-F computed mode growth/damping rate in the 2-D parameter space 

(        ), for the same sets of equilibria as in Fig. 2(b). It is evident that the ideal wall stabilization expands the 

stable window in the aforementioned parameter space. In particular, (i) the infernal-kink instability disappears in 

all plasmas with pos-D shape; (ii) more importantly, the mode becomes stable even for equilibria with relatively 

weak neg-D shape (  >-0.25). Note also that (iii) the stable boundary shown in Fig. 3(a) is not very sensitive to 
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the radial location of     , indicating that the plasma boundary shape (triangularity) is the main factor 

determining the infernal-kink stability here. Coming back to the physics discussion presented in subsection 3.2, 

we conclude that, in strongly shaped neg-D plasmas with NCS, the bad curvature destabilization overcomes the 

stabilizing influence by the Shafranov shift, with a net effect which is still destabilizing for the infernal-type of 

mode. 

The computed mode growth rate is further quantified (Fig. 3(b)) in terms of the shafranov shift      and 

the modified tearing index      evaluated at      , while varying the plasma boundary triangularity   and 

     .  At fixed  -value (and varying      ), the mode growth rate behaves non-monotonically as a result of 

simultaneous changes of       and     . The dominant contribution for this non-monotonic behavior comes 

from the curvature effect as indicated by   .   

4. FURTHER IDENTIFICATION OF THE NATURE OF INSTABILITY 

In what follows, we further identify the mode, by systematically investigating the influence of the      value 

and plasma pressure on the mode growth rate.  

 We have so far fixed the plasma pressure (at     ) and the      value (close to 2) while studying the 

shaping effect (the plasma boundary triangularity). On the other hand, it is known that both proximity of      

to a rational number and the plasma pressure drive the infernal instability [43]. We will therefore vary these two 

parameters while fixing the triangularity. We choose two extreme cases for the latter (       and 0.5). 

 Figure 4 reports several representative results. Note that we also show two cases with different radial 

locations of       with           and          , respectively. Several interesting observations can be 

made from Fig. 4.  

 First, for the equilibria with pos-D shape (     , Fig. 4(a, c)), the computed mode growth rate peaks 

near, but generally not exactly at, the integer value of        (for the n=1 instability). We attribute the slight 

shift of the peaks from       , shown in Fig. 4(a,c), by the poloidal mode coupling effect as the main reason. 

Indeed, the relative amplitudes of the sideband (with respect to m=2) poloidal harmonics are not small. We 

emphasize, however, that the parabolic-like behaviour of the mode growth rate versus      cannot be used as 

the sufficient condition for identifying the infernal mode.  

 Next, we consider cases with the neg-D shape (Fig. 3(b,d)). Here, the mode stability behaviour (versus 

    ) is very different between the two cases of           and 0.6. We identify the latter as pressure-driven 

global kink instability. Note that this is not a simple external kink-peeling mode, since the mode remains 

unstable even with an ideal wall placed at the plasma boundary. The similar monotonic dependence of the 

growth rate on      shows that the instability is not an infernal mode even with wall stabilization.  

 Our study has so far been focusing on the n=1 instability, which is most macroscopic in terms of the 

toroidal wavelength and is typically the most dangerous one in tokamak plasmas. On the other hand, it is well-

known that high-n infernal instability also occurs, and the mode growth rate exhibits oscillations with increasing 

toroidal mode number [28]. Such oscillation behaviors are also recovered by MARS-F, as long as the infernal 

mode is the dominant component of the computed eigenfunction. One example is reported in Fig. 5, where we 

choose an equilibrium with          . We find that this oscillating behavior is somewhat sensitive to the 

choice of the     value (         in the example shown). This is not surprising given the fact that the 

oscillation is mainly dictated by proximity of      to rational numbers m/n for the infernal mode instability. 
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Figure 4. The growth rate of the n=1 infernal-kink instability versus the q-value of      while varying the plasma pressure 

  , for (a,c) the pos-D shapes (     ) and (b,d) the neg-D shapes (      ). In the upper and bottom panels plot the 

radial location of       at           and          , respectively. Here the black vertical lines denote the q-value of 

     (=2). 

    
Figure 5. (a) The computed growth rate of the infernal-kink mode via MARS-F versus the toroidal mode number n, with the 

plasma pressure fixed at         and the radial location of      at          . (b) The analytic function      versus 

the toroidal mode number n, where         [           ]. The value of      is fixed at         .  

5. CONCLUSION 

We have performed numerical investigation into the stability of the n=1 ideal infernal-kink instability in neg-D 

plasmas with negative central shear for the equilibrium safety factor. The latter is motivated by the desire to 

form the internal transport barrier in the neg-D configuration, which is known to have difficulty to form the edge 

transport barrier. We also contrast the MHD stability results with that from the pos-D configuration, with 

otherwise similar equilibrium profiles (the plasma pressure, toroidal current density as well as the safety factor). 

All stability computations are carried out utilizing the MARS-F code, based on a series of semi-analytically 

designed equilibria with varying plasma boundary shape.  

 As a key conclusion, we find that infernal-kink mode is generally more unstable in neg-D plasmas as 

compared to the pos-D counterpart. This poses certain MHD limitations on achieving stable operational regime 

with ITB and with the neg-D concept. Based on our numerical findings, we propose a recipe for resolving this 

issue, by (i) forming the ITB not too close to the magnetic axis in neg-D plasmas to avoid strong kink-drive, and 

(ii) by allowing      further away from rational numbers (integer numbers for the n=1 instability) to avoid the 

infernal drive.  

 For comparison, we find that the infernal-kink mode is more stable in pos-D plasmas with the same safety 

factor profile and the same    value. In fact, a stable window opens up near       for the n=1 infernal mode 

(with sufficient large       and without wall stabilization), as we scan triangularity of the plasma boundary 

shape. Imposing an ideal-wall boundary condition suppresses the external kink drive, leading to wider stable 

windows extending to the neg-D regime (       ).  

 Physics-wise, we find that the more unstable behavior of the infernal-kink mode with the neg-D 

configuration is mainly due to less favorable (or even unfavorable) average magnetic curvature near the      

location, as compared to the pos-D counterpart. The larger Shafranov shift associated with the neg-D shape 

helps the mode stabilization, but is not sufficient to overcome the destabilizing effect due to bad curvature. On 

the other hand, the aforementioned two competing effects can be employed to explain the non-monotonic 

dependence of the computed mode growth rate versus   and the appearance of the stable window at 

intermediate (positive) delta values. As another interesting physics point, we identify a strong poloidal mode 
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coupling due to plasma shaping (toroidicity, elongation, triangularity, etc.), which helps explain the slight shift 

(with respect to that predicted by the analytic theory) of the peak location of the mode growth versus     .   
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