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Abstract

Secure grasping of the breeding blanket (BB) segments using the vertical transporter (BBVT) is required for remote
maintenance via the upper port at EU-DEMO. This entails engaging the folding gripper within the countersunk interface hole
of the target BB segment. A detailed grasping pipeline is proposed in this work, split into four discrete actions: interface
detection, alignment, insertion and engagement. A hierarchical control framework is also proposed, including a low-level
variable admittance controller (VAC) and high-level planner with multisensory action evaluation and recovery. VAC achieves
robust contact-rich gripper insertion utilizing the geometry of the interface to passively guide the gripper and allows automatic
recovery from some collisions. The proposed pipeline and control strategy were tested using down-scaled prototypes of the
gripper and interface together with off-the-shelf components including a UR3e manipulator substitute for the BBVT.
Experiments with large random pose errors demonstrated the robustness of the interface detector and VAC, which recovered
from 29% of collisions and led to zero “NG” insertions and engagement evaluations. However, the high collision rate (60%)
indicated that the performance of alignment evaluator must be improved in the future by changes to the sensor layout and
integration of additional modalities. The code for this project is available on GitHub'.

1. INTRODUCTION

A major technological gap which must be addressed for operating EU-DEMO safely and economically is the
availability of robust remote maintenance tools and strategies [1]. Unlike previous tokamaks such as JET and
ITER, the breeding blankets (BBs) in DEMO are consolidated into large segments for streamlined maintenance
[2]. The resulting crescent-shaped segments, weighing up to 125 and 180 tonnes for the inboard and outboard
types, respectively, are maintained via a vertical upper port. The 7-degree of freedom robotic arm known as the
BB vertical transporter (BBVT) is under development for this remote handling (RH) task [3], for which safe and
reliable grasping of the BB segments will be critical. As a result of the limited exposed grasping area within the
upper port and the irregular shapes of the segments, the BBVT must withstand significant moments throughout
the RH task while manipulating them with sub-centimeter accuracy to avoid unwanted and potentially costly
collisions. It follows that the fit between the conical gripper and the matching standardized BB segment interface
hole should be as tight as feasible, and thus a very accurate and precise feedback control architecture will be
required for carrying out the grasp. At the same time, the projected gamma radiation dose rate to silicon is
approximately 100 Gy/h near the blankets during RH operations [4], leading to potential faults or erroneous
behaviors of onboard sensors and microcontrollers [5,6], as well as the possible degradation of the joint servos’
trajectory tracking accuracy [7].

Clearly, a pipeline for robust semi-autonomous BB segment grasping is necessary. It should be composed of
simple actions with associated self-correcting recovery actions in case of failure. Evaluation of action success
should ideally be based on multiple independent sensor readings to avoid relying on any one sensor which may
be faulty. Such a control framework is proposed in this paper. To pair with the fault-tolerant high-level task
planning, we propose a low-level control policy based on admittance with variable stiffness and damping to allow
the gripper insertion to succeed despite the fact the alignment with the interface could be poor. Finally, gripper
alignment is enhanced by applying a state-of-the-art Al-based object detector for interface localization, which
should perform well even under challenging environmental conditions.

! https://github.com/AU-DK-Robotics/bb-safe/tree/fec
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The following contributions are presented in this work:

— A hierarchical control architecture for BB segment grasping at EU-DEMO, in which high-level self-
correcting action planning based on multi-sensory state evaluation is coupled with a low-level variable-
admittance control policy for increasing safety and reliability of contact-rich insertion.

— A proposed action pipeline for BBVT-based grasping of EU-DEMO's BB segments.

— Results of experiments conducted with a down-scaled gripper and interface, which demonstrate the high
success rate of the proposed pipeline even when the initial (view) and alignment poses are subject to random
disturbances which cause frequent collisions.

2. RELEVANT WORKS
2.1. BB segment remote maintenance

Both JET [8] and ITER [9] were designed with predominantly horizontal port layouts, though with separate upper,
equatorial and divertor ports at ITER. A vertical port was suggested as an option for INTOR-NET [10] in the 80’s.
Loving et al. [11] and Coleman et al. [2] proposed the adopted vertical remote maintenance architecture for
DEMO, while the associated transporter design able to withstand the large static loads plus seismic activity was
developed by Bachmann et al. [3] [4]. The self-locking folding gripper and matching interlock in the BB segment
upper surface was introduced by Steinbacher et al. [12]. The BBVT spatial kinematics and detailed static loads
were investigated in [13]. Meanwhile, the problem of reliable control has not yet been studied in detail.

2.2. Learning-based object detection

Computer vision, a key enabling technology for robotics, will support accurate alignment of the gripper and
interface. Through visual input, robots can detect, inspect, and locate objects [ 14]. Prior to the rise of deep learning,
object detection relied on hand-crafted features such as the Histogram of Oriented Gradients (HOG) descriptor
[15], which worked well but was sensitive to lighting and background variations. The advent of Convolutional
Neural Networks (CNNs) marked a turning point, bringing major gains in detection accuracy, speed, and
robustness [16]. CNN-based two-stage detectors such as R-CNN [17], Faster R-CNN [18], SPPNet [19], and
Feature Pyramid Networks [20] combine region proposals with feature extraction and deliver high accuracy,
particularly on small objects, although they can be too slow for real-time use. To meet real-time requirements,
one-stage detectors like YOLO [21,22], SSD [23], and RetinaNet [24] were developed, achieving much faster
inference with only a small trade-off in accuracy. Today, learning-based object detection is reliable even in
challenging conditions, but the main barriers to deployment lie in camera calibration, sensor fusion, and system
integration [25]. Dataset preparation, frame alignment and connecting vision outputs to robot control remain time-
consuming and require expert knowledge, making rapid or large-scale deployments difficult. Current research
focuses on automating calibration and simplifying integration to make robotic systems faster to set up and more
reliable in production.

2.3. Admittance control for contact-rich tasks

As physical human—robot—environment interaction becomes more common, impedance and admittance control
have become standard approaches for ensuring safe collaboration and for executing tasks that go beyond pure
position, force, or hybrid control schemes. The goal of these methods is to shape the dynamic relationship between
the robot and its environment [26,27]:

fext = Md(jé - Xr) + Cd(x - xr) + Kd(x - xr) =MgX, + Cy%, + Kyx, (1)
where x, is the desired trajectory unaffected by the external force f,,;, x is the measured trajectory, and My,
C4, K, represent the virtual mass, damping, and stiffness of the controller. These controllers are naturally robust
to model errors and external disturbances, making them suitable for interaction with uncertain and changing
environments [28]. As contact-rich manipulation tasks become more demanding, research has moved from using
fixed impedance gains to approaches that adapt or schedule the virtual impedance online [29]. For instance, in
tasks such as valve turning, the required interaction force changes throughout the motion, which calls for varying
impedance across different contact phases. This has motivated the development of variable impedance and
admittance control schemes to improve adaptability and maintain safety [30,31]. For BB-segment grasping, such
adaptive interaction strategies will be crucial for achieving consistent performance and reliable operation.
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3. METHODOLOGY
3.1. Overview of the grasping pipeline

An overview of the proposed BB segment grasping architecture and pipeline is shown in Fig. 1. At the task-
planning level, the pipeline is split into four simple actions: detection, alignment, insertion and engagement, with
the robot state being evaluated based on multiple independent sensor readings after each step. Specifically, we
have focused on using an ultrasonic range finder, a wrist force-torque (F-T) sensor and force sensitive resistors
(FSRs) on each arm of the gripper locking mechanism for these evaluations. Whether the evaluation outcome is
“okay” or “NG” determines if the pipeline should continue nominally or a recovery action should be taken to re-
attempt the action. An object detector based on the industry standard YOLO is trained and used for identification
and localization of the gripper interface. For gripper insertion, an admittance control policy is activated which
varies the stiffness and damping matrices based on the gripper depth, enabling near-perfect insertion accuracy
despite misalignment with the interface and even overcoming minor collisions with the BB segment top surface.
A flowchart of the pipeline steps with evaluations and re-planning is shown in Fig. 2(a).
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FIG. 1. Overview of the proposed pipeline and associated methods.

3.2. Al-based object detector and eye-in-hand calibration

To increase the accuracy of gripper alignment, the real location of the interface in relation to the gripper should
be accurately determined. Localization of the interface within the upper port with environmental conditions
unfavorable to CMOS sensors (high gamma radiation and low visibility) must rely on an effective object detection
algorithm. Therefore, the state-of-the-art object detector YOLOvS8 [22] is adopted in this paper. YOLOVS is a
single-stage, anchor-free detector that directly predicts object classes and bounding box coordinates from feature
maps in a single forward pass, enabling real-time performance with high accuracy. Its architecture comprises a
CSP-based backbone for feature extraction, a PAN/FPN neck for multi-scale feature fusion and a decoupled head
for classification and regression, which together improve convergence and detection precision. To ensure robust
performance under varying perspectives and environmental conditions, a diverse and well-labeled training dataset,
as shown in Fig. 2(b), is essential. Such a dataset allows the network to learn distinctive object features and remain
resilient to noise and disturbances. For this work, two interface geometries with different sizes and features were
created to evaluate YOLOvVS’s detection performance. A total of 210 images were collected under various
orientations, positions, and lighting conditions for the training stage. These images were manually labeled with
bounding boxes and class annotations, enabling the detector to learn the features of interface for accurate detection.

The 3D position of the interface obtained from the object detector is expressed in the camera coordinate system,
whose origin is located at the optical center of the camera. To enable the robot to manipulate the interface, this
position must be transformed into the robot base frame. This requires knowledge of the spatial relationship
between the camera and the robot end-effector, a problem known as eye-in-hand calibration.
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FIG. 2. Technical details: (a) the complete process for the gripper engagement, (b) Dataset for training Al-based object
detector and eye-in-hand calibration, and (c) variable admittance control for contact-rich manipulations.

As illustrated in Fig. 2(b), the goal of hand—eye calibration is to determine the homogeneous transformation 9T,
from the camera frame c to the gripper (or tool) frame g. Knowing this transformation, along with the
robot’s forward kinematics T, from the robot base frame b to the gripper frame, allows computation of the
camera pose in the base frame °T, = nggTC. Consequently, any object detected in the camera frame can be
mapped into the robot base frame, enabling motion planning and end-effector path generation. To perform the
calibration, the camera observes a fixed calibration target (checkerboard) from multiple robot poses. For each
pose i, the forward kinematics provide ng(i) , while the vision system estimates CTt(i) , the pose of the
checkerboard t in the camera frame. Because the checkerboard is static in the base frame, the transformation
bT, remains constant across measurements. Using multiple distinct poses, the following relationship holds:

prOorPer® = b, | {=1,2,..,N )
Solving this equation for 9T, gives the camera-to-gripper transformation. In practice, over 10 poses are recorded
to improve accuracy, and the transformation is estimated using the Tsai—Lenz algorithm, which computes rotation
and translation through a least-squares solution over all recorded poses. Once calibrated, the robot can transform
any 3D detection from the camera frame into its own base frame, allowing precise motion planning for interface
alignment and insertion.

3.3. Variable admittance control for contact-rich manipulation

Variable admittance control (VAC) is adopted to achieve smooth, gap-free insertion of the gripper into the BB
segment interface. As illustrated in Fig. 2(c), the VAC module implements a virtual mass—spring—damper system
whose input is the desired interaction force F,; and the measured interaction force F,, from the wrist-mounted
force—torque (F/T) sensor (both specified in the gripper frame). The resulting position offset x, is computed by
solving the admittance dynamics in real time: computed by solving the admittance dynamics in real time:

MgX, + CyXe + Kgxo = Fipy — Fy (3)
where M,, C,;, K; are diagonal matrices representing the virtual inertia, damping, and stiffness, respectively.
This second-order differential equation is numerically integrated with 4" order Runge-Kutta method at each
control cycle to generate the desired end-effector trajectory X.. The position controller then tracks this trajectory,
causing the robot to respond compliantly to external forces rather than strictly holding its commanded pose. To
improve performance during insertion, the stiffness and damping gains are continuously scaled as a function of
the current insertion depth z according to the relation:

s=1+(p-DA-2/2) 4
where z, is the total depth of the interface hole, z is the current gripper depth offset and s,, is a maximum
scale factor. At shallow depths, lower stiffness and damping allow larger lateral displacements, enabling the
gripper to be guided into the hole when contacting the rim. As the gripper moves deeper, the increased gains
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reduce compliance, stabilize the motion, and ensure precise alignment as clearance becomes smaller. When the
measured vertical contact force F;, reaches the expected level F,;, and the final trajectory deviation x, is
smaller than a threshold, the insertion is considered complete. This combination of real-time admittance
integration, depth-dependent gain scaling, and termination based on measured contact force provides a robust
solution for reliable and repeatable insertion under environmental uncertainties.

4. EXPERIMENTS AND RESULTS
4.1. Experimental setup

Experiments were conducted to determine the effectiveness of the
proposed pipeline and control architecture. The setup for these
experiments is shown in Fig. 3. The off-the-shelf UR3e cobot arm
was used to stand in for the BBVT as no full-scale or down-scaled
BBVT has been completed as of the time of writing. The manipulator
is equipped with a kinematically accurate 3:10 scale folding gripper
prototype made from PLA and PETG using additive manufacturing,
while the complementary interface fixture was bolted within reach
of the UR3e. The gripper prototype is fully functional, with a Hitec
HSR-2645CRH servo driving the folding arm mechanism via a 3-D  FIG. 3. Experimental setup, including

printed rack and spur gear. To each folding arm tip is mounted a FSR ~ downscaled 3-D printed gripper with folding
402, the output signal of which is wired in series with a 100 kQ arm mechanism, BB segment interface, UR3e
resistor to behave as a switch in accordance with the datasheet. The manipulator and sensor array.

UR3e integrates the desired wrist F-T sensor, while a Grove v2

ultrasonic range finder mounted near the base of the gripper measures the distance to the BB segment top surface,
completing the trio of sensors used for action evaluation. The servo, FSRs and range finder are managed by an
Arduino Uno microcontroller, which communicates to the controlling PC via serial. For object detection, a
RealSense D435 RGB+IR stereo camera is mounted opposite the ultrasonic range finder near the gripper base and
connected directly to the PC. The UR3e is controlled from the PC over Ethernet connection using the Python
library “ur_rtde,” which implements a RTDE-based interface.

4.2. Heuristics for transporter state evaluation
The outcome of each action is categorized as “okay” if the following criteria are met, otherwise “NG”:

— Alignment: the x- and y-offset of the gripper from the ideal pose are each <2 cm and the ultrasound
distance measurement is < 22 cm.

— Insertion: the F, force component registered by the UR3e wrist F-T sensor is > 4 N, and the ultrasound
distance measurement is in the range [3,5] cm.

— Engagement: the ultrasound distance measurement is in the range [3,5] cm and at least one of the analog
readings from the arm-tip sensors is > 2.5 V.

4.3. Results and discussion
4.3.1. Object detection

The YOLOVS detector was trained for 388 epochs until automatic early stopping based on validation performance.
As shown in Fig. 4(a), the validation box and classification losses converged smoothly, while mAP50 and
mAP50-95 rapidly increased and reached values above 0.95 within the first 100 epochs, remaining steady for the
rest of training. This indicates stable convergence and sufficient training duration to capture the object features.
Representative results in Fig. 4(b) show that the detector reliably identifies both the small and large 3D-printed
interface geometries under a wide range of orientations, positions, and lighting conditions. The predicted bounding
boxes align well with the ground truth annotations, and confidence scores are typically higher than 0.9,
demonstrating that the trained network is robust and well-suited for integration in the grasping pipeline.
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FIG. 4. (a): Performance of object detector on validation dataset. (b): sample detection results using two different 3-D
printed interface geometries (small and big).

4.3.2. Full pipeline with admittance control and rule-based action evaluator

To verify the robustness of the proposed pipeline, it was implemented and executed 35 times using the downscaled
test system (Fig. 3) while introducing uniformly random x and y offsets of up to +£4 cm for both the detection
gripper alignment poses. The possible error in interface localization due to detecting the partially cut off interface
in the images combined with the artificial offset to result in cumulative alignment pose errors that could be
significantly greater than +4 cm. For comparison, the width and height of the interface hole are 18.5 and 12.4 c¢m,
respectively. These random pose offsets simulated the presence of large positioning errors caused by sensor or
actuator faults or inaccuracies in object detection due to noise.

Of the 35 experiments conducted, only 14 (40%) resulted in the gripper avoiding collision with the top surface of
the BB segment. However, the overall grasping pipeline success rate was 57%, as the VAC was able to recover
in 6 experiments (29% of collisions), inserting the gripper after one or more bounces against the BB segment
upper surface. Trajectory and force data from one such experiment is shown in Fig. 5.
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FIG. 5. Gripper position and wrist F-T sensor data for an insertion attempt in which the griper collided with the top BB
segment interface surface, yet the VAC was able to successfully complete the grasp.

The 15 unsuccessful grasps all failed during the insertion step of the pipeline due to collision with the BB segment
upper surface. In other words, every grasp in which the admittance control recovered from collision or never
collided at all resulted in successful engagement of the locking mechanism, demonstrating the reliability of the
variable admittance policy at inserting the gripper completely and correctly with a tight fit.

On the other hand, the high number of insertion failures points to a flawed implementation of the alignment
evaluator. Indeed, only a single “NG” alignment evaluation was recorded across 20 successful grasps. This can
be largely explained by suboptimal integration of the ultrasonic sensor into the gripper prototype. The significant
beam spreading in the cheap off-the-shelf model combined with the mounting location near the gripper base
caused it to be insensitive to small or medium interface misalignments. Also, the use of one sensor on the side of
the gripper meant that the evaluator was only sensitive to misalignments in a single direction which would cause
the sensor to be placed above the interface hole. Thus, for reliable alignment evaluation using this sensor type,
they should be integrated into the bottom surface of the gripper and at least four should be used (one per edge).
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Fig. 6 illustrates how the implemented alignment, insertion and engagement evaluators are meant to help reduce
failures by using simple heuristics like the distance measured from the ultrasonic sensor to trigger re-planning.
This is true in principle, however, given the observed results, improvements such as incorporate more sensor
modalities are required to improve reliability. Early trials indicate that integrating data from the RGB camera
image can significantly improve the reliability of the alignment evaluator, for example.
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FIG. 6. Demonstration of the pipeline as implemented. Gray arrows show some of the failure types which are more likely to
occur without action evaluation, due to the lack of state awareness and re-planning.

5. CONCLUSION AND FUTURE WORK

This work introduced a pipeline consisting of four steps for BB segment grasping at EU-DEMO using the BBVT
robot and its actuated gripper. A control framework for BB grasping was also proposed which aimed to be robust
to potential sensor and actuator faults resulting from gamma radiation while achieving the tight fit needed for BB
manipulation. This included fault-tolerant action planning with multisensory robot state evaluation together with
reliable interface detection using YOLO and robust contact-rich insertion using VAC. Experiments were carried
out using a 3:10 scale gripper prototype complete with actuated locking mechanism and sensor array including an
F-T sensor, rangefinder and two FSRs. With a successful grasp rate of 57% despite large random artificial pose
errors leading to collisions in 60% of trials, the experiments showed that the VAC was fault-tolerant and reliable,
but the alignment evaluator was flawed and failed to ensure gripper alignment that would prevent collision. Thus,
a major focus of future work will be improving the evaluators by design changes or integrating more modalities,
e.g., using transformer or diffusion-based models to incorporate RGB image data. An accurate downscaled 7-
degree of freedom BBVT prototype with which the gripper can be integrated is also planned. Also, the gripper
and BB segment interface will be manufactured with better tolerances and more accurate materials in the future.
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