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Abstract 

Dynamical simulations of error field (EF) penetration in a tokamak plasma are performed in cylindrical geometry. This 

is accomplished by the RFX-locking code, already used to simulate the tearing mode dynamic in tokamaks [L. Piron et al, 

Nucl. Fusion 64 066029 (2024).]. To this purpose, the code is enriched by recently developed specific physics describing the 

linear plasma response to a resonant EF [P. Zanca, Nucl. Fusion 65 056023 (2025)]. Application to cylindrical proxy of JET 

and RFX-mod2, the revamped RFX-mod experiment, are discussed.  

1. INTRODUCTION 

Magnetic confinement experiments are inevitably subject to error fields (EF), namely small amplitude static 

magnetic fields due to coils and machine imperfections. They represent a concern when they resonate in the 

plasma, namely when they have the same helicity as the equilibrium field at a given radius (resonant surface). In 

this case, EF drives magnetic reconnection in intrinsically tearing-stable plasmas, and above an amplitude 

threshold it produces a wall locked magnetic island, making the plasma prone to a disruption. This phenomenon 

is known as error-field penetration. A research line interprets EF penetration with linear magneto-hydrodynamic 

(MHD), in both one fluid and two-fluids (drift-MHD) versions [1, 2, 3, 4]. The justification for using linear theory 

is that plasma rotation suppresses the EF driven reconnection before the penetration takes place. The linear plasma 

response is encapsulated within the delta prime (Δ'), a quantity which measures the magnitude and phase of the 

current sheet induced by the plasma rotation at the resonant surface, shielding the EF penetration. Recently, a new 

∆' computation in single-fluid MHD has been presented [5]. That work re-examines the problem from the very 

beginning, giving a better justification of the mathematical techniques usually adopted in this context. Moreover, 

it provides a reliable solution method more general than the asymptotic-regimes techniques elsewhere proposed 

[1]. The generalization of this method to the two-fluids drift-MHD is developed in a further paper [6]: with respect 

to the previous single-fluid computation [5] no significant difference in the EF threshold is found for ohmic plasma 

conditions. Therefore, in the present work we will limit to the single fluid model. In two mentioned analyses [5, 

6] the EF penetration threshold is estimated by a steady state analysis. Instead, here we provide dynamical 

simulation of the EF penetration process. To this purpose, the Δ' computation developed in [5] is included in the 

cylindrical RFX-locking code. This code was initially written for modelling the tearing modes dynamics in the 

reversed-field-pinch [7], but it was subsequently adapted to the tokamak case [8, 9]. Two devices will be 

simulated: a cylindrical proxy of JET and a cylindrical proxy of RFX-mod2 [10, 11], the revamped RFX-mod 

experiment, which is predicted to start operations in the next years. The paper is organized as follows. In section 

2 the model is presented. In section 3 the simulations are discussed. Section 4 draws the conclusions. 
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2. THE MODEL  

The present study is performed with the cylindrical RFX-locking code. The formalism used in the code derives to 

a large extent from [1], and it is based on a reduction of the single-fluid, visco-resistive MHD equations with zero 

pressure gradient, in cylindrical geometry. We also mention a recent application to ITER of a similar model [12]. 

We describe the plasma as a cylindrical configuration with periodicity length 2𝜋𝑅0 in the z direction: 𝑅0 is the 

simulated plasma major radius, and the minor radius is denoted by 𝑎. We adopt the coordinates (𝑟, 𝜃, 𝜙 = 𝑧 𝑅0⁄ ), 

and we exploit the force-free condition ∇ × 𝑩𝟎 = 𝜇0𝑱𝟎 = 𝜎(𝑟)𝑩𝟎, with 𝜎(𝑟) an input function, to determine the 

equilibrium magnetic field 𝑩𝟎 = (0, 𝐵0𝜃 , 𝐵0𝜙). The Fourier harmonics of a generic perturbed quantity are defined 

by the series 𝑋(𝑟, 𝜃, 𝜙, 𝑡) = ∑ 𝑥𝑚,𝑛(𝑟, 𝑡)𝑒𝑖(𝑚𝜃−𝑛𝜙)
𝑚,𝑛 𝜖 ℤ . The model’s equations can be grouped into four 

categories, described in following paragraphs. The first deals with the so-called ‘outer region’, which consists of 

the most part of the plasma and the vacuum region: here, we limit to the ideal-MHD description at the leading 

order in the perturbation, though viscosity is included at the second order to model the velocity profile evolution. 

The second category deals with the so-called ‘inner region’, namely a radially thin portion of plasma about the 

resonant surface: in this region all the terms of the original visco-resistive equations are retained. The third 

category concerns the passive and active conductive structures surrounding the plasma. Finally, the fourth 

category specifies some important kinetic quantities entering the above equations.  

2.1. Outer region 

In most of the plasma and vacuum regions, the radial profile of the magnetic perturbation produced by a (𝑚, 𝑛) 

EF can be described by the ideal-MHD, force-balance equation, linearized in the perturbation (Newcomb’s 

equation) [13]: 
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(
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𝜕
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𝑟𝜎2

𝐻𝑚𝑛
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2)  𝜓𝑚,𝑛(𝑟, 𝑡) = −𝑖 𝑟𝑏𝑟
𝑚,𝑛(𝑟, 𝑡) 

 

3)  𝜀(𝑟) = 𝑟 𝑅0⁄ ,      𝐻𝑚𝑛(𝑟) = 𝑚2 + 𝑛2𝜀2,     𝐺𝑚,𝑛 = 𝑚𝐵0𝜙 + 𝑛𝜀𝐵0𝜃 ,     𝐹𝑚,𝑛 = 𝑚𝐵0𝜃 − 𝑛𝜀𝐵0𝜙 

 

Equation (1), which is at the first order in the perturbation, is singular at the resonant surface, identified by the 

radius 𝑟𝑚,𝑛 such that 𝐹𝑚,𝑛(𝑟𝑚,𝑛) = 0. Therefore, it is solved in the separate regions 0 < 𝑟 < 𝑟𝑚,𝑛 and 𝑟 > 𝑟𝑚,𝑛, by 

imposing the continuity of 𝜓𝑚,𝑛 at 𝑟 = 𝑟𝑚,𝑛. The singularity is resolved by a detailed analysis in a narrow region 

around 𝑟𝑚,𝑛 (inner region), which includes non-ideal physics. This will be shown in the next paragraph. In general, 

the radial derivative of 𝜓𝑚,𝑛 is discontinuous at 𝑟 = 𝑟𝑚,𝑛: this fact marks the presence of a current sheet localized 

at the resonant surface. The mode at the resonant surface is denoted by the symbol Ψ𝑠
𝑚,𝑛 ≡ 𝜓𝑚,𝑛(𝑟𝑚,𝑛 , 𝑡). 

Hereafter, we will drop the superscript (𝑚, 𝑛), unless when strictly necessary.  

Plasma viscosity enters the motion equation at the second order in the perturbation, in order to evolve the toroidal 

and poloidal angular velocities averaged over the angular co-ordinates, Ω𝜙(𝑟, 𝑡), Ω𝜃(𝑟, 𝑡): 

 

4)  𝜌
𝜕
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1

𝑟3

𝜕
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( 𝑟3  

𝜕
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Ω𝜃) −

𝜌

𝜏𝜃
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1

4𝜋2𝑟3𝑅0
𝑇𝐸𝑀,𝜃 𝛿(𝑟 − 𝑟𝑚,𝑛) 

 

𝜌 is the mass density, 𝜏𝑉 is the diffusion time associated to the perpendicular viscosity, 𝜏𝜃 is the neoclassical 

poloidal flow damping time, and 𝑆𝜙 , 𝑆𝜃 are phenomenological momentum sources. For the sake of simplicity all 

these quantities are taken constant with 𝑟. The terms Ω𝜃 𝜏𝜃⁄ , 𝑆𝜙 , 𝑆𝜃 are included ad hoc. 𝑇𝐸𝑀,𝜙 , 𝑇𝐸𝑀,𝜃  are the 

toroidal and poloidal components of the electromagnetic (EM) torque integrated over the angular coordinates, 

which develops near the resonant surface due to the 𝑱 × 𝑩 term taken at the second order in the perturbations. The 

Dirac delta models the local radial character of the EM torque. Indeed, at the resonant surface the static EF induces 

both a current sheet, mainly as a consequence of the plasma rotation (in the plasma frame of reference EF is seen 

rotating), and a non-zero radial field, as a consequence of the partial reconnection (partial because it is hindered 

by the current sheet). The coupling between these two effects gives rise to an electromagnetic torque 𝑇𝐸𝑀 in the 

vicinity of the resonant surface. This torque can be modelled by standard quasi-linear expressions as reported in 

[7, 13]: 
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6)  𝑇𝐸𝑀,𝜙 =
8𝜋2𝑅0

𝜇0

𝑛 𝑟𝑚𝑛

𝐻𝑚𝑛
 |Ψ𝑠|2𝐼𝑚(∆′),       𝑇𝐸𝑀,𝜃 = −𝑚 𝑛⁄ 𝑇𝐸𝑀,𝜙 

 

The so-called delta-prime parameter ∆′, defined by  

 

7) ∆′=
1

Ψ𝑠

𝑑

𝑑𝑟
𝜓𝑚,𝑛|

𝑟𝑚,𝑛−

𝑟𝑚,𝑛+

  

 

is the normalized radial field derivative discontinuity at the resonant surface. Therefore, Ψ𝑠∆′ quantifies amplitude 

and phase of the current sheet. Formula (6) can be understood in this way: 𝑖Ψ𝑠 quantifies the radial field at the 

resonant surface, Ψ𝑠∆′ quantifies the current sheet, so that the real part of the product Ψ𝑠∆′ (𝑖Ψ𝑠)∗ gives the 

angular integrated electromagnetic torque.  

We can express Ψ𝑠 in terms of ∆′ and the perturbation at the vacuum vessel Ψ𝑣 ≡ 𝜓(𝑟𝑣 , 𝑡) (the plasma-facing 

structure; see paragraph 2.3) by the following relationship [5]  

 

8)  Ψ𝑠 =
𝐸𝑣𝑠 Ψ𝑣

𝑟𝑚𝑛∆′−𝐸𝑠
,     𝐸𝑠 = 𝑟

𝑑

𝑑𝑟
𝜓̂𝑠|

 𝑟𝑚,𝑛−

 𝑟𝑚,𝑛+

,     𝐸𝑣𝑠 = 𝑟
𝑑

𝑑𝑟
𝜓̂𝑣|

 𝑟𝑚,𝑛−

 𝑟𝑚,𝑛+

 

 

The real dimensionless parameters 𝐸𝑠 , 𝐸𝑣𝑠 are the radial derivative discontinuities respectively of the Newcomb’s 

equation solution 𝜓̂𝑠 which is 1 at 𝑟𝑚,𝑛 regular in the origin, and zero at 𝑟 = 𝑟𝑣 , and of the solution 𝜓̂𝑣 which is 1 

at 𝑟 = 𝑟𝑣  and zero for 𝑟 ≤ 𝑟𝑚,𝑛. They are fixed by the magnetic equilibrium and by the plasma-vessel proximity. 

Relation (8) derives from (7) and from identity 𝑟
𝑑

𝑑𝑟
𝜓𝑚,𝑛|

𝑟𝑚,𝑛−

𝑟𝑚,𝑛+

= 𝐸𝑠Ψ𝑠 + 𝐸𝑣𝑠Ψ𝑣 . We take the function 𝜎(𝑟), 

which specifies the equilibrium, in order to make the plasma stable to tearing modes in the absence of EF (Ψ𝑣 =
0): this requires 𝐸𝑠 < 0 [14].  

2.2. Inner region 

The purpose of the inner region analysis is computing ∆′ in terms of plasma parameters such as rotation velocity, 

resistivity and viscosity. We adopt the novel method presented in [5] to derive ∆′ in the single-fluid visco-resistive 

MHD. For the details we refer to that paper, whereas here we limit to the main results. The single-fluid ohm’s law 

and motion equation are retained in full in the inner region: 

 

9)  𝑬 + 𝑽 × 𝑩 = 𝜂 𝑱 

 

10)  𝜌 (
𝜕

𝜕𝑡
+ 𝑽 ∙ ∇) 𝑽 = 𝑱 × 𝑩 +

𝜌𝑎2

𝜏𝑉
∇2𝑽 

 

𝜂 is the plasma resistivity, taken radially constant. Equations (9), (10) are analysed in slab cartesian geometry, 

suitable to the narrow inner region. Moreover, we take quasi-stationary conditions (𝜕 𝜕𝑡⁄ ≅ 0), since the EF is 

assumed static, so the induced modifications on magnetic field and velocity slowly evolve. After a normalization 

and a reduction process, which includes the expression of 𝑽 in terms of a stream function 𝜙 by 𝑽 = ∇𝜙 × 𝒛̂ +
𝑉𝑧𝒛̂, equations (9), (10) provide the following two linear equations for the normalized magnetic perturbation 

harmonic 𝜓̃ and the normalized perturbation harmonic 𝜙̃ of the velocity stream function: 

 

11)     
𝑑2𝜓̃

𝑑𝑋2 = 𝑖𝑄 𝜓̃ − 𝑖𝑋 𝜙̃,                     𝑋 = 𝑆1/3 (𝑟 − 𝑟𝑚,𝑛) 𝑟𝑚,𝑛⁄  ,        𝑆 = 𝜏𝑅 𝜏𝐴⁄ ,    𝑄 = 𝑆1/3𝜏𝐴𝜔 

 

12)     𝑋
𝑑2𝜓̃

𝑑𝑋2 = 𝑄
𝑑2𝜙̃

𝑑𝑋2 + 𝑖𝑃
𝑑4

𝑑𝑋4 𝜙̃,               𝑃 = 𝜏𝑅 𝜏𝑉⁄     

 

𝑆 ≫ 1 and 𝑃 are respectively the Lundquist number and the Prandtl number, with 𝜏𝐴 the Alfven time, and 𝜏𝑅 =
𝜇0𝑎2 𝜂⁄  the resistive diffusion time, respectively; 𝑋 is a normalized radial stretched variable, with 𝑋 → ±∞ 

corresponding to the boundary of the inner region; 𝜔 = 𝑚Ω𝜃(𝑟𝑚,𝑛) − 𝑛Ω𝜙(𝑟𝑚,𝑛) is the EF frequency as seen by 

the frame co-rotating with the plasma at the resonant surface. Note that 𝑄 is a normalized EF frequency. Then, ∆′ 

is computed from the asymptotic behaviour for 𝑋 → ±∞ of the solution of (11), (12). As shown in [5], the most 
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efficient method to solve (11), (12) involves the Fourier transform of the same equations by defining 𝜙̅(𝑘) =

∫ 𝜙̃(𝑋)𝑒−𝑖𝑘𝑋𝑑𝑋
+∞

−∞
, 𝜓̅(𝑘) = ∫ 𝜓̃(𝑋)𝑒−𝑖𝑘𝑋𝑑𝑋

+∞

−∞
: 

 

13)   (𝑘2 + 𝑖𝑄)𝜓̅ +
𝑑

𝑑𝑘
𝜙̅ = 0,        𝑖

𝑑

𝑑𝑘
(−𝑘2𝜓̅) + (𝑄 𝑘2 − 𝑖𝑃 𝑘4)𝜙̅ = 0 

 

The eligibility of the Fourier transform as a technique for solving (11), (12) has been justified in [5]. Then 

equations (13) are combined to get the single equation for 𝜙̅ 

 

14)  
𝑑

𝑑𝑘
[

𝑘2

𝑘2+𝑖𝑄
 

𝑑

𝑑𝑘
𝜙̅] = 𝑘2(𝑖𝑄 + 𝑃𝑘2 )𝜙̅ 

  

which should be solved by imposing the vanishing of 𝜙̅ at 𝑘 → ∞. We circumvent the problem of assigning the 

correct boundary condition to 𝜙̅ at infinity, by taking the Riccati transformation [15] 𝑤̅(𝑘) =
𝑘2 (𝑘2 + 𝑖𝑄)⁄ 𝑑𝜙̅ 𝑑𝑘⁄ 𝜙̅⁄ , to get the following first-order non-linear equation in 𝑤̅: 

 

15)   
𝑑

𝑑𝑘
𝑤̅ +

𝑘2+𝑖𝑄

𝑘2  𝑤̅2  = 𝑘2(𝑖𝑄 + 𝑃𝑘2 ) 

 

This equation is numerically integrated backward from 𝑘𝑚𝑎𝑥 to 0: the solution quickly becomes insensitive to the 

initial condition 𝑤̅(𝑘𝑚𝑎𝑥), since the behavior at 𝑘 → 0 is fixed by 𝑤̅(𝑘) = 𝑖𝑘 𝑄⁄ + 𝑜(𝑘2) and the equation is of 

the first order. ∆′ is then extracted from the asymptotic behavior of 𝑤̅(𝑘) at 𝑘 → 0, which indeed corresponds to 

the behavior at 𝑋 → ±∞ of the original fields 𝜓̃(𝑋), 𝜙̃(𝑋). 

2.3. Conductive structures 

The solution of (1) is matched with the solutions of specific equations modelling the active and passive conductive 

structures, placed in the region 𝑟 > 𝑎. The plasma is surrounded by a vacuum vessel at the radius 𝑟𝑣 > 𝑎, 

approximated by a uniform shell with infinitesimal thickness and time constant 𝜏𝑣. The evolution of the magnetic 

perturbation across the vessel is ruled by the thin-shell equation derived in [16]: 

 

16)   𝜏𝑣
𝜕

𝜕𝑡
𝜓(𝑟𝑣) = 𝑟𝑣

𝑑

𝑑𝑟
𝜓|

 𝑟𝑣−

 𝑟𝑣+

 

 

The discontinuity in the right-hand-side of (16) is produced by the image currents, which develop onto the vessel. 

Outside the vessel, we place a thick support structure modelled by a uniform shell placed ad the radius 𝑟𝑏 > 𝑟𝑣, 

with thickness 𝛿𝑏, electrical conductivity 𝜎𝑏 and time constant 𝜏𝑏 = 𝜇0 𝑟𝑏 𝛿𝑏 𝜎𝑏. The evolution of the perturbation 

inside the structure is approximated by the diffusion equation derived in [16] too: 

 

17)  𝜏𝑏
𝜕

𝜕𝑡
𝜓 = 𝑟𝑏  𝛿𝑏

𝜕2

𝜕𝑟2 𝜓,            𝑟𝑏 ≤ 𝑟 ≤ 𝑟𝑏 + 𝛿𝑏 

 

A 𝑀𝑐 × 𝑁𝑐 grid of identical, evenly spaced rectangular coils, with 𝑀𝑐, 𝑁𝑐 the numbers in the poloidal and toroidal 

directions respectively, is placed outside the support structure at 𝑟𝑐 > 𝑟𝑏 . The uniform grid defines the current 

harmonics by 

 

18)  𝐼𝑐
𝑚,𝑛 =

1

𝑀𝑐 𝑁𝑐
∑ 𝐼𝑘,𝑗𝑒−𝑖(𝑚𝜃𝑘−𝑛𝜙𝑗)

𝑘=1,𝑀𝑐
𝑗=1,𝑁𝑐

 

 

with 𝐼𝑘,𝑗 the coils’ currents and 𝜃𝑘 , 𝜙𝑗the poloidal and toroidal angles of the coils, respectively. The (𝑚, 𝑛) EF is 

artificially produced by a current harmonic 𝐼𝑐
𝑚,𝑛 ≠ 0. This harmonic produces the following discontinuity in the 

radial derivative of 𝜓𝑚,𝑛 at the coils radius: 
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19)  𝑟𝑐
𝑑

𝑑𝑟
𝜓𝑚,𝑛|

𝑟𝑐−

𝑟𝑐+

= 𝑖𝐿𝑐
𝑚,𝑛𝐼𝑐

𝑚,𝑛
,          𝐿𝑐

𝑚,𝑛 = 𝜇0[𝑚2 + (𝑛𝑟𝑐 𝑅0⁄ )2]𝑓𝑐(𝑚, 𝑛) 

 

with 𝑓𝑐 a shape factor. If the coils’ conductor thickness is much smaller than 𝑟𝑐 , we can adopt the approximation 

𝑓𝑐(𝑚, 𝑛) ≅ 𝑠𝑖𝑛(𝑚 Δ𝜃𝑐 2⁄ ) (𝑚 Δ𝜃𝑐 2⁄ )⁄ × 𝑠𝑖𝑛(𝑛 Δ𝜙𝑐 2⁄ ) (𝑛 Δ𝜙𝑐 2⁄ )⁄  [17], with Δ𝜃𝑐, Δ𝜙𝑐 the poloidal and toroidal 

angular extent of the coils. 

2.4. Some kinetic quantities 

As far as the kinetic quantities are concerned, we adopt the same definition used in the analysis of the ohmic 

tokamak presented in [6]. The reason for considering the ohmic tokamak is that scaling laws of the electron and 

ion temperatures, which enter in several parameters of the model, are available in this configuration. From [18] 

we take the following expression for the on-axis electron temperature (SI units are used, apart from the 

temperature given in keV):  

 

20)  𝑇𝑒0(𝑘𝑒𝑉) ≈ 𝐸𝑥𝑝(−12)𝑎−1.24𝑅0
0.97𝐼𝑝

0.81𝑍𝑒𝑓𝑓
0.37 

 

𝐼𝑝  is the plasma current, and 𝑍𝑒𝑓𝑓  the plasma effective charge. Several scaling laws for the ion temperature have 

been proposed in the early ohmic tokamaks [19]. Here, we take the Artsimovitch’s expression 𝑇𝑖𝐴 [20] corrected 

by a factor coming from the energy exchange with electrons 

 

21)  𝑇𝑖0(𝑘𝑒𝑉) = 𝑇𝑖𝐴 × (
𝑓

0.338
)

1/3

,     𝑓 =

𝑇𝑒0
𝑇𝑖0

 − 1

(
𝑇𝑒0
𝑇𝑖0

)
3/2,      𝑇𝑖𝐴(𝑘𝑒𝑉) ≈ 1.29 × [𝐼𝑝(𝑀𝐴) 𝐵0𝜙𝑛(1020) 𝑅0

2]
1/3

𝐴𝑖
−1/2

 

 

𝐴𝑖 is the mass number. Expression (21) is an equation for 𝑇𝑖0, with 𝑇𝑒0 as input. The expression for 𝑇𝑖𝐴 is 

compatible with gyro-Bohm ion thermal diffusivity [6]. As far as the temperature profile is concerned, we take a 

parabola for both ions and electrons, The viscous diffusion time 𝜏𝑉 is proportional to the momentum confinement 

time 𝜏𝑀 defined as the ratio of the total toroidal angular momentum to the toroidal angular momentum input. Here 

we take 𝜏𝑉 = 𝜏𝑀. JET analyses show a good correlation of 𝜏𝑀 with the ion energy replacement time 𝜏′𝐸𝑖  [21], 

suggesting the identification 𝜏𝑀 = 𝜏′𝐸𝑖 . The latter is computed by  

 

22)  𝜏′𝐸𝑖 ≈
3

2

𝑛(1020) 〈𝑇𝑖〉×1.6×104

𝑞𝑒𝑖
,      𝑞𝑒𝑖 ≈ 4.33 × 108 𝑚𝑒

𝑚𝑖
𝑍𝑖  𝑙𝑛Λ 𝑛2(1020) (〈𝑇𝑒〉 − 〈𝑇𝑖〉) 〈𝑇𝑒〉3/2⁄ , 

 

with 𝑞𝑒𝑖  the collisional power density transfer from electrons to ions, 〈𝑇〉 the volume average temperature and 𝑙𝑛Λ 

the Coulomb logarithm. The resistive diffusion time 𝜏𝑅 is estimated by the Spitzer resistivity 𝜂𝑆 with an 

approximate neoclassical correction [22]: 𝜏𝑅 = 𝜇0𝑎2 〈𝜂𝑆〉⁄ × 〈[1 − (𝑟 𝑅0⁄ )0.5]2〉.  
To formalize 𝜏𝜃, we refer to the analysis presented in [23], showing that after few ion collision times 𝜏𝑖, with 𝜏𝑖 ∝

〈𝑇𝑖
3/2〉 𝑛𝑒⁄ , the decay of the poloidal flow has an exponential trend with the characteristic time 𝜏𝜃 =

0.507𝜏𝑖 𝑙𝑛(2)⁄ .  

The spontaneous rotation in ohmic tokamak discharges is discussed in [24] for TCV experiments. The velocity 

common to ions and electrons, namely the single-fluid velocity modelled in (4), (5), is due to the electric drift. In 

[24] the toroidal component of this velocity is found to be a multiple (~3) of the neoclassical ion diamagnetic 

velocity, approximately given by (𝑑𝑇𝑖 𝑑𝑟⁄ ) (𝑒𝐵𝜃)⁄ , with 𝑒 the electron charge magnitude. In RFX-locking the 

unperturbed value of Ω𝜙 at the resonant surface (i.e. the steady-state value in the absence of EF, implying 𝜕 𝜕𝑡⁄ =

0, 𝑇𝐸𝑀,𝜙 = 0) is set according to this observation: Ω𝜙(𝑟𝑚𝑛) = 3 (𝑑𝑇𝑖 𝑑𝑟⁄ ) (𝑒𝐵𝜃𝑅0)⁄ ⌋𝑟=𝑟𝑚𝑛
. This fixes the 

radially constant source 𝑆𝜙. The unperturbed profile of Ω𝜃  is then computed from (5) with 𝜕 𝜕𝑡⁄ = 0, 𝑇𝐸𝑀,𝜃 = 0, 

under the assumption 𝑆𝜃 = 𝑆𝜙. 
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3. SIMULATIONS 

In this section we discuss dynamical simulations of the penetration of a 𝑚 = 2, 𝑛 = 1 EF. First, we set the 

geometrical parameters of the machine, the time constant of the passive structures, and the characteristics of the 

coils grid. The latter are required to define the term 𝐿𝑐
𝑚,𝑛

 which enters equation (15), but they are irrelevant for 

the outcome of the simulation. Then, we fix the magnetic equilibrium. In cylindrical geometry is not easy finding 

𝑚 = 2, 𝑛 = 1 tearing-stable equilibria. Here, we accomplish this by taking 𝑞(0) = 0.7, 𝑞(𝑎) ≈ 3, with 𝑞(𝑟) the 

cylindrical safety factor. Finally, we set the toroidal magnetic field magnitude, the plasma density, and we take 

𝑍𝑒𝑓𝑓 = 𝐴𝑖 = 1. This completely defines the kinetic quantities defined in paragraph 2.4. After 0.2𝑠 of simulation, 

we apply the EF by the coils’ current harmonic 𝐼𝑐
2,1

, imposing a linearly increasing amplitude of the same. The 

EF amplitude is quantified by the radial field absolute value at the plasma facing structure, namely at the vacuum 

vessel: |𝑏𝑟(𝑟𝑣)|. Note that, 𝑏𝑟(𝑟𝑣) is total radial field, summing up the plasma, passive structures and coils 

contributions. The frequency 𝜔 (see definition in paragraph 2.2) decreases owing to the EM torque (6), until it 

reaches a complete stop at a given critical value of the EF amplitude: this mark the EF penetration. Examples of 

this process are given in figure 1 for a cylindrical proxy of JET (𝑅0 = 3, 𝑎 = 1, 𝑟𝑣 = 1.3, 𝑏 = 1.7, 𝜏𝑣 = 3 ×
10−3, 𝜏𝑏 = 3 × 10−2 in SI units) and a cylindrical proxy of RFX-mod2 (𝑅0 = 2, 𝑎 = 0.4965, 𝑟𝑣 = 0.5125, 𝑏 =
0.55, 𝜏𝑣 = 0.1, 𝜏𝑏 = 2.4 × 10−2 in SI units). The significant difference of the EF threshold in the two cases is 

explained by the different density, toroidal field and plasma-vessel distance taken in the simulations of the two 

devices.  

A unified description of the EF penetration in the two devices is now presented. According to equation (77) of 

[5], the EF amplitude threshold obtained with a full stationary model is expressed in terms of the normalized total 

radial field at the vacuum vessel |𝑏𝑟(𝑟𝑣)|𝑡ℎ𝑟 𝐵𝜙⁄  times the factor 𝑟𝑣  𝐸𝑣𝑠 𝑟𝑚,𝑛⁄  which compensates for the plasma-

vessel proximity dependence of |𝑏𝑟(𝑟𝑣)|. Therefore, that equation suggests using the metric |𝑏𝑟(𝑟𝑣)|𝑡ℎ𝑟 𝐵𝜙⁄ ×

𝑟𝑣  𝐸𝑣𝑠 𝑟𝑚,𝑛⁄  to express the EF threshold. We run several simulations by performing a scan in density and toroidal 

field. In the JET case we also perform a size scaling by considering besides the actual geometry (𝑅0 = 3) two 

hypothetical further cases, 𝑅0 = 4, 𝑅0 = 1.5, with the other lengths varied in proportion. Then we take a 

multivariate regression of the EF penetration threshold with the scan parameters. The result is the following: 

23)   𝑅𝐹𝑋𝑚𝑜𝑑2 →  |𝑏𝑟(𝑟𝑣)|𝑡ℎ𝑟 𝐵𝜙⁄ × 𝑟𝑣  𝐸𝑣𝑠 𝑟𝑚,𝑛⁄ = 9.5 × 10−4𝑛𝑒
1.13±0.01𝐵𝜙

−1.54±0.03 

24)   𝐽𝐸𝑇(𝑅0 = 3)  →  |𝑏𝑟(𝑟𝑣)|𝑡ℎ𝑟 𝐵𝜙⁄ × 𝑟𝑣 𝐸𝑣𝑠 𝑟𝑚,𝑛⁄ = 9.6 × 10−4𝑛𝑒
0.98±0.01𝐵𝜙

−1.48±0.02 

25)   𝐽𝐸𝑇(𝑅0 = 1.5,3,4)  →  |𝑏𝑟(𝑟𝑣)|𝑡ℎ𝑟 𝐵𝜙⁄ × 𝑟𝑣  𝐸𝑣𝑠 𝑟𝑚,𝑛⁄ = 7.7 × 10−4𝑛𝑒
1.00±0.01𝐵𝜙

−1.49±0.02𝑅0
0.19±0.02 

26)  𝐽𝐸𝑇(𝑅0 = 1.5,3,4)  →  |𝑏𝑟(𝑟𝑣)|𝑡ℎ𝑟 𝐵𝜙⁄ = 2.7 × 10−4𝑛𝑒
1.00±0.01𝐵𝜙

−1.49±0.02𝑅0
0.19±0.02 

In the above expressions 𝑛𝑒 is given in 1019𝑚−3 units. Regression (24) refers to the actual JET size, whereas (25) 

includes the size scaling so it contains 𝑅0 as additional parameter. Regression (26) discards the 𝑟𝑣  𝐸𝑣𝑠 𝑟𝑚,𝑛⁄  term, 

so it differs from (25) only by a global factor. As shown in figure 2 the quality of the fits (23), (24), (25) is very 

good. Moreover, scaling laws (25) aligns almost perfectly the RFXmod2 and JET simulated thresholds, despite 

the different layout of the two devices, whereas (26) does not: see figure 3. Therefore, only the metric 

|𝑏𝑟(𝑟𝑣)|𝑡ℎ𝑟 𝐵𝜙⁄ × 𝑟𝑣  𝐸𝑣𝑠 𝑟𝑚,𝑛⁄  provides a unified picture of the phenomenon. Expression (25) also confirms, with 

full dynamical simulations, the steady-state result of [6]. The size dependence in (25) is not strong, but the scaling 

with 𝑅0 is clearly positive. As explained in [6] this result is obtained thanks to the equality 𝜏𝑀 = 𝜏′𝐸𝑖 , whereas the 

more customary assumption 𝜏𝑀 = 𝜏𝐸, with 𝜏𝐸 the total energy confinement time, leads to a negative scaling with 

𝑅0 in ohmic conditions. Experimentally, this is the most difficult dependence to be assessed. As discussed in [25], 

the scaling with 𝑅0 is positive, and the exponent should be about 0.2 (the exponent 1.4 obtained in one of the 

regressions presented in [25] is doubtful according to the authors). The density and toroidal field exponents are in 

good agreement with the result of [25]. Expression (24) is also quite close to the scaling |𝑏𝑟|𝑡ℎ𝑟 𝐵𝜙⁄ ∝

𝑛𝑒
0.94±0.06𝐵𝜙

−1.2±0.05 obtained in JET discharges [26].  

The analysis just discussed highlights |𝑏𝑟(𝑟𝑣)|𝑡ℎ𝑟 𝐵𝜙⁄ × 𝑟𝑣 𝐸𝑣𝑠 𝑟𝑚,𝑛⁄  as a metric able to unify experiments with 

different layout. In other words, it can be used to extrapolate, within a cylindrical approximation, the experimental 

EF threshold data obtained in one device to any other device. Of course, in this extrapolation a dependence 𝑅0
𝛼  

with 𝛼 ≈ 0.2 needs to be included to account for the different machine sizes. To this purpose, RFX-mod2 [10, 
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11] operated as a tokamak will be particularly suitable to perform EF penetration studies for several reasons. First, 

RFX-mod2 benefits of a close-fitting stabilizing shell, which should make the tokamak plasma stable to tearing 

modes, the ideal condition to perform this study. Second, the full coverage of the torus by active coils and the 

circular cross section of the device allow the application of EF with quite pure helicity, net of the toroidal coupling 

which unavoidably enriches the content of poloidal mode numbers 𝑚. Moreover, plasma with different shapes, 

from the circular to the X-point can be realized by the field shaping coils system. Finally, the large number of 

magnetic sensors allows a precise detection of the phenomenon. The results, expressed in term of the above 

universal metric, will be useful to make extrapolations to other machines not yet in operations. 

         

FIG. 1. Dynamical simulation of the EF penetration for JET (left) and RFXmod2 (right). In the JET case we take 𝑛𝑒 =
1020𝑚−3, 𝐵𝜙 = 2.2𝑇. In the RFXmod2 case we take 𝑛𝑒 = 1.3 × 1019𝑚−3, 𝐵𝜙 = 0.5𝑇. EF penetration corresponds to the 

instant where 𝜔 drops to zero. 

 

FIG. 2. EF penetration threshold in terms of |𝑏𝑟(𝑟𝑣)|𝑡ℎ𝑟 𝐵𝜙⁄ × 𝑟𝑣 𝐸𝑣𝑠 𝑟𝑚,𝑛⁄  as function of scaling laws (23) for 

RFXmod2, (24) for JET, and (25) for JET with size scaling 

 

4. CONCLUSIONS 

Simulations of EF penetration have been carried out for cylindrical proxy of JET and RFX-mod2. This has been 

accomplished by the RFX-locking code, already used to simulate the tearing mode dynamic [9], with the inclusion 

of recently developed specific physics to model the linear plasma response to a resonant EF [5]. The results 

confirm previous theoretical analysis [6] and are in good agreement with experimental scaling laws [25, 26]. We 

also propose to express the EF threshold in a metric able to unify machines with different front-end systems: 

indeed the predictions for JET and RFX-mod2 superimpose almost exactly in this metric (figure 3, left). This 

metric will be important to extrapolate the results of the next EF penetration experiments planned on RFX-mod2. 

Finally, we give an estimate of the EF threshold expected in the ohmic ITER plasma on the basis of (25): by taking 

𝑅0 = 6.2𝑚, 𝐵𝜙 = 5.3𝑇, 𝑛𝑒 = 1020𝑚−3, 𝑞(𝑎) = 3.3, 𝑟𝑚,𝑛 𝑟𝑣⁄ = 0.7, 𝐸𝑣𝑠 = 2, one gets |𝑏𝑟(𝑟𝑣)|𝑡ℎ𝑟 𝐵𝜙⁄ ≅ 3 ×
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10−4, which is significantly larger that the EF normalized value ≅ 5 × 10−5expected after correction with the 

Error Field Correction Coils [27].  

 

     
FIG. 3. EF penetration threshold in terms of |𝑏𝑟(𝑟𝑣)|𝑡ℎ𝑟 𝐵𝜙⁄ × 𝑟𝑣 𝐸𝑣𝑠 𝑟𝑚,𝑛⁄  as function of scaling law (25)(left), 

and in terms of |𝑏𝑟(𝑟𝑣)|𝑡ℎ𝑟 𝐵𝜙⁄  as function of scaling law (26)(right) for RFXmod2 and for JET,  
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