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Abstract

Dynamical simulations of error field (EF) penetration in a tokamak plasma are performed in cylindrical geometry. This
is accomplished by the RFX-locking code, already used to simulate the tearing mode dynamic in tokamaks [L. Piron et al,
Nucl. Fusion 64 066029 (2024).]. To this purpose, the code is enriched by recently developed specific physics describing the
linear plasma response to a resonant EF [P. Zanca, Nucl. Fusion 65 056023 (2025)]. Application to cylindrical proxy of JET
and RFX-mod2, the revamped RFX-mod experiment, are discussed.

1. INTRODUCTION

Magnetic confinement experiments are inevitably subject to error fields (EF), namely small amplitude static
magnetic fields due to coils and machine imperfections. They represent a concern when they resonate in the
plasma, namely when they have the same helicity as the equilibrium field at a given radius (resonant surface). In
this case, EF drives magnetic reconnection in intrinsically tearing-stable plasmas, and above an amplitude
threshold it produces a wall locked magnetic island, making the plasma prone to a disruption. This phenomenon
is known as error-field penetration. A research line interprets EF penetration with linear magneto-hydrodynamic
(MHD), in both one fluid and two-fluids (drift-MHD) versions [1, 2, 3, 4]. The justification for using linear theory
is that plasma rotation suppresses the EF driven reconnection before the penetration takes place. The linear plasma
response is encapsulated within the delta prime (A'), a quantity which measures the magnitude and phase of the
current sheet induced by the plasma rotation at the resonant surface, shielding the EF penetration. Recently, a new
A' computation in single-fluid MHD has been presented [5]. That work re-examines the problem from the very
beginning, giving a better justification of the mathematical techniques usually adopted in this context. Moreover,
it provides a reliable solution method more general than the asymptotic-regimes techniques elsewhere proposed
[1]. The generalization of this method to the two-fluids drift-MHD is developed in a further paper [6]: with respect
to the previous single-fluid computation [5] no significant difference in the EF threshold is found for ohmic plasma
conditions. Therefore, in the present work we will limit to the single fluid model. In two mentioned analyses [5,
6] the EF penetration threshold is estimated by a steady state analysis. Instead, here we provide dynamical
simulation of the EF penetration process. To this purpose, the A' computation developed in [5] is included in the
cylindrical RFX-locking code. This code was initially written for modelling the tearing modes dynamics in the
reversed-field-pinch [7], but it was subsequently adapted to the tokamak case [8, 9]. Two devices will be
simulated: a cylindrical proxy of JET and a cylindrical proxy of RFX-mod2 [10, 11], the revamped RFX-mod
experiment, which is predicted to start operations in the next years. The paper is organized as follows. In section
2 the model is presented. In section 3 the simulations are discussed. Section 4 draws the conclusions.
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2. THE MODEL

The present study is performed with the cylindrical RFX-locking code. The formalism used in the code derives to
a large extent from [1], and it is based on a reduction of the single-fluid, visco-resistive MHD equations with zero
pressure gradient, in cylindrical geometry. We also mention a recent application to ITER of a similar model [12].
We describe the plasma as a cylindrical configuration with periodicity length 2zR, in the z direction: R, is the
simulated plasma major radius, and the minor radius is denoted by a. We adopt the coordinates (r, 8, ¢ = z/R,),
and we exploit the force-free condition V X By = uoJo = a(r) By, with a(r) an input function, to determine the
equilibrium magnetic field By = (O, Boe, BO¢). The Fourier harmonics of a generic perturbed quantity are defined
by the series X(r,8,¢,t) = YpnnezXx™(r, )™~ The model’s equations can be grouped into four
categories, described in following paragraphs. The first deals with the so-called ‘outer region’, which consists of
the most part of the plasma and the vacuum region: here, we limit to the ideal-MHD description at the leading
order in the perturbation, though viscosity is included at the second order to model the velocity profile evolution.
The second category deals with the so-called ‘inner region’, namely a radially thin portion of plasma about the
resonant surface: in this region all the terms of the original visco-resistive equations are retained. The third
category concerns the passive and active conductive structures surrounding the plasma. Finally, the fourth
category specifies some important kinetic quantities entering the above equations.

2.1. Outer region
In most of the plasma and vacuum regions, the radial profile of the magnetic perturbation produced by a (m, n)

EF can be described by the ideal-MHD, force-balance equation, linearized in the perturbation (Newcomb’s
equation) [13]:

2
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Equation (1), which is at the first order in the perturbation, is singular at the resonant surface, identified by the
radius 7, ,, such that Fm,n(Tm,n) = 0. Therefore, it is solved in the separate regions 0 < r < 73, ,, and r > 1, ,, by
imposing the continuity of ™™ at r = r,, ,,. The singularity is resolved by a detailed analysis in a narrow region
around r,, ,, (inner region), which includes non-ideal physics. This will be shown in the next paragraph. In general,
the radial derivative of 1™ is discontinuous at r = 7, ,: this fact marks the presence of a current sheet localized
at the resonant surface. The mode at the resonant surface is denoted by the symbol W™ = ™" (1, . t).
Hereafter, we will drop the superscript (m, n), unless when strictly necessary.

Plasma viscosity enters the motion equation at the second order in the perturbation, in order to evolve the toroidal
and poloidal angular velocities averaged over the angular co-ordinates, Q4 (1, t), Qg (r, t):
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p is the mass density, 7, is the diffusion time associated to the perpendicular viscosity, 74 is the neoclassical
poloidal flow damping time, and Sy, Sy are phenomenological momentum sources. For the sake of simplicity all
these quantities are taken constant with r. The terms Q,/7g,S4,Sg are included ad hoc. Tgy ¢, Tgum,e are the
toroidal and poloidal components of the electromagnetic (EM) torque integrated over the angular coordinates,
which develops near the resonant surface due to the J x B term taken at the second order in the perturbations. The
Dirac delta models the local radial character of the EM torque. Indeed, at the resonant surface the static EF induces
both a current sheet, mainly as a consequence of the plasma rotation (in the plasma frame of reference EF is seen
rotating), and a non-zero radial field, as a consequence of the partial reconnection (partial because it is hindered
by the current sheet). The coupling between these two effects gives rise to an electromagnetic torque Ty, in the
vicinity of the resonant surface. This torque can be modelled by standard quasi-linear expressions as reported in
[7, 13]:
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The so-called delta-prime parameter A’, defined by

7) A= L L ymn| T
WY dr Tmn—
is the normalized radial field derivative discontinuity at the resonant surface. Therefore, W;A" quantifies amplitude
and phase of the current sheet. Formula (6) can be understood in this way: i%; quantifies the radial field at the
resonant surface, W,A' quantifies the current sheet, so that the real part of the product W,A" (i%W,)* gives the
angular integrated electromagnetic torque.
We can express W, in terms of A’ and the perturbation at the vacuum vessel ¥, = ¢ (7, t) (the plasma-facing
structure; see paragraph 2.3) by the following relationship [5]

Tmnt d ~ | Tmnt
o Eys = T;%
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The real dimensionless parameters Ej, E,,; are the radial derivative discontinuities respectively of the Newcomb’s
equation solution i which is 1 at r;,, ,, regular in the origin, and zero at r = r,, and of the solution ), which is 1
atr =1, and zero for r < r;,, ,. They are fixed by the magnetic equilibrium and by the plasma-vessel proximity.
nt

" = EY, + E,¥,. We take the function o(r),

"mn—
which specifies the equilibrium, in order to make the plasma stable to tearing modes in the absence of EF (¥, =
0): this requires E; < 0 [14].

m,

Relation (8) derives from (7) and from identity T%lﬂm'n

2.2. Inner region

The purpose of the inner region analysis is computing A’ in terms of plasma parameters such as rotation velocity,
resistivity and viscosity. We adopt the novel method presented in [5] to derive A’ in the single-fluid visco-resistive
MHD. For the details we refer to that paper, whereas here we limit to the main results. The single-fluid ohm’s law
and motion equation are retained in full in the inner region:

9) E+VxB=n]
2
10) p(%+V-V)V=]XB+%V2V

n is the plasma resistivity, taken radially constant. Equations (9), (10) are analysed in slab cartesian geometry,
suitable to the narrow inner region. Moreover, we take quasi-stationary conditions (d/dt = 0), since the EF is
assumed static, so the induced modifications on magnetic field and velocity slowly evolve. After a normalization
and a reduction process, which includes the expression of V in terms of a stream function ¢ by V = V¢ x 2 +
V,z, equations (9), (10) provide the following two linear equations for the normalized magnetic perturbation
harmonic 1 and the normalized perturbation harmonic ¢ of the velocity stream function:

a2y _ .= %
1) 2=iQp-ix g, X =83 (r—tnn)/Tan,  S=Tr/ta Q=510
azy a’¢ ., d* £
12) X=Q0 atiP a9 P =1g/1y

S > 1 and P are respectively the Lundquist number and the Prandtl number, with t, the Alfven time, and 7, =
uoa?/n the resistive diffusion time, respectively; X is a normalized radial stretched variable, with X —» +o0
corresponding to the boundary of the inner region; @ = mQg (73,,,) — nQy (7.0 ) is the EF frequency as seen by
the frame co-rotating with the plasma at the resonant surface. Note that Q is a normalized EF frequency. Then, A’
is computed from the asymptotic behaviour for X — +oo of the solution of (11), (12). As shown in [5], the most
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efficient method to solve (11), (12) involves the Fourier transform of the same equations by defining ¢ (k) =

+oo

27 dO0e "X dx, i) = [ h(X)e ¥ dx:
13) (kK2 +iQh+--¢=0, i=(—k2P)+(Qk*—iP kP =0

The eligibility of the Fourier transform as a technique for solving (11), (12) has been justified in [5]. Then
equations (13) are combined to get the single equation for ¢

) L
dk Lk2+iQ dk

= | = k2(iQ + Pk? )

which should be solved by imposing the vanishing of ¢ at k — oco. We circumvent the problem of assigning the
correct boundary condition to ¢ at infinity, by taking the Riccati transformation [15] w(k) =
k?/(k? +iQ)d¢p/dk/, to get the following first-order non-linear equation in w:

k +LQ _2

15) —w+55°

= k?(iQ + Pk?)

This equation is numerically integrated backward from k., to 0: the solution quickly becomes insensitive to the
initial condition w(k,,4, ), since the behavior at k — 0 is fixed by w(k) = ik/Q + o(k?) and the equation is of
the first order. A’ is then extracted from the asymptotic behavior of w(k) at k — 0, which indeed corresponds to
the behavior at X — +oo of the original fields ) (X), ¢ (X).

2.3. Conductive structures

The solution of (1) is matched with the solutions of specific equations modelling the active and passive conductive
structures, placed in the region r > a. The plasma is surrounded by a vacuum vessel at the radius n, > a,
approximated by a uniform shell with infinitesimal thickness and time constant ,,. The evolution of the magnetic
perturbation across the vessel is ruled by the thin-shell equation derived in [16]:

T+

16) T3 () = o]

The discontinuity in the right-hand-side of (16) is produced by the image currents, which develop onto the vessel.
Outside the vessel, we place a thick support structure modelled by a uniform shell placed ad the radius r, > r,,
with thickness &, electrical conductivity ;,, and time constant 7, = u, 1, &, g;. The evolution of the perturbation
inside the structure is approximated by the diffusion equation derived in [16] too:

9 9?2
17) Tbal/)=1”b5bml/), T'bSTST’b+5b
A M, x N, grid of identical, evenly spaced rectangular coils, with M., N, the numbers in the poloidal and toroidal

directions respectively, is placed outside the support structure at r, > r;,. The uniform grid defines the current
harmonics by

—i(mek—nqu)

18) I = Ye=1m; I je

cre Jj=1,Nc¢

with I ; the coils’ currents and 6y, ¢;the poloidal and toroidal angles of the coils, respectively. The (m,n) EF is
artificially produced by a current harmonic 17" # 0. This harmonic produces the following discontinuity in the
radial derivative of ™" at the coils radius:
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Tt
= LI, Le™ = po[m? + (nr/Ro)*1fc(m, n)

Te—

19) 7, —-9p™"

with £, a shape factor. If the coils’ conductor thickness is much smaller than r,., we can adopt the approximation
fe(m,n) = sin(mA6,./2)/(m AB,./2) X sin(nAp./2)/(nAp./2) [17], with Ab,, A¢, the poloidal and toroidal
angular extent of the coils.

2.4. Some kinetic quantities

As far as the kinetic quantities are concerned, we adopt the same definition used in the analysis of the ohmic
tokamak presented in [6]. The reason for considering the ohmic tokamak is that scaling laws of the electron and
ion temperatures, which enter in several parameters of the model, are available in this configuration. From [18]
we take the following expression for the on-axis electron temperature (SI units are used, apart from the
temperature given in keV):

20) Teo(keV) ~ Exp(—12)a™"** R 1981223

I,, is the plasma current, and Z, ., the plasma effective charge. Several scaling laws for the ion temperature have
been proposed in the early ohmic tokamaks [19]. Here, we take the Artsimovitch’s expression T;, [20] corrected
by a factor coming from the energy exchange with electrons

Teo
1/3 T~ 1 1/3 _
21) Typ(keV) = Ty X (03%) . f= (:(:’T Tia(keV) =~ 1.29 X [I,(MA) Bogn(102°) R2]"* 471/
Tio.

A; is the mass number. Expression (21) is an equation for T;,, with T,, as input. The expression for T;, is
compatible with gyro-Bohm ion thermal diffusivity [6]. As far as the temperature profile is concerned, we take a
parabola for both ions and electrons, The viscous diffusion time t, is proportional to the momentum confinement
time 7,, defined as the ratio of the total toroidal angular momentum to the toroidal angular momentum input. Here
we take 7, = 7. JET analyses show a good correlation of z,, with the ion energy replacement time t'g; [21],
suggesting the identification t,, = t'g;. The latter is computed by

, 3n(1029)(T;)x1.6x10%
22) T'p - ——————————
2 qei

Gei = 433 X 10° 22 Z, InA n?(10%°) ((T.) — (T ) /(Te)*/2,

with q,; the collisional power density transfer from electrons to ions, (T') the volume average temperature and inA
the Coulomb logarithm. The resistive diffusion time t, is estimated by the Spitzer resistivity ng with an
approximate neoclassical correction [22]: Tz = poa®/(ns) X {[1 — (r/Ry)*%1?).

To formalize 74, we refer to the analysis presented in [23], showing that after few ion collision times ;, with 7; «
(Tf/ 2)/n,g, the decay of the poloidal flow has an exponential trend with the characteristic time 1y =
0.5077;/In(2).

The spontaneous rotation in ohmic tokamak discharges is discussed in [24] for TCV experiments. The velocity
common to ions and electrons, namely the single-fluid velocity modelled in (4), (5), is due to the electric drift. In
[24] the toroidal component of this velocity is found to be a multiple (~3) of the neoclassical ion diamagnetic
velocity, approximately given by (dT;/dr)/(eBg), with e the electron charge magnitude. In RFX-locking the
unperturbed value of Q4 at the resonant surface (i.e. the steady-state value in the absence of EF, implying 0/t =
0, Tgm,p = 0) is set according to this observation: Qg (1,,) = 3 (dT;/dr)/(eBgRo)lr=r,,,- This fixes the
radially constant source S,. The unperturbed profile of Q is then computed from (5) with 0/9t = 0, Tgy e = 0,
under the assumption Sy = S.
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3. SIMULATIONS

In this section we discuss dynamical simulations of the penetration of a m = 2,n = 1 EF. First, we set the
geometrical parameters of the machine, the time constant of the passive structures, and the characteristics of the
coils grid. The latter are required to define the term L7™ which enters equation (15), but they are irrelevant for
the outcome of the simulation. Then, we fix the magnetic equilibrium. In cylindrical geometry is not easy finding
m = 2,n = 1 tearing-stable equilibria. Here, we accomplish this by taking q(0) = 0.7, q(a) = 3, with q(r) the
cylindrical safety factor. Finally, we set the toroidal magnetic field magnitude, the plasma density, and we take
Zesr = A; = 1. This completely defines the kinetic quantities defined in paragraph 2.4. After 0.2s of simulation,
we apply the EF by the coils’ current harmonic I>*, imposing a linearly increasing amplitude of the same. The
EF amplitude is quantified by the radial field absolute value at the plasma facing structure, namely at the vacuum
vessel: |b,.(r,)|. Note that, b,.(r,) is total radial field, summing up the plasma, passive structures and coils
contributions. The frequency w (see definition in paragraph 2.2) decreases owing to the EM torque (6), until it
reaches a complete stop at a given critical value of the EF amplitude: this mark the EF penetration. Examples of
this process are given in figure 1 for a cylindrical proxy of JET (R, =3,a=1,1n,=13,b=1.7,7,=3 X
1073,7, = 3 x 1072 in Sl units) and a cylindrical proxy of RFX-mod2 (R, = 2,a = 0.4965,7, = 0.5125,b =
0.55,7, = 0.1,7, = 2.4 X 1072 in SI units). The significant difference of the EF threshold in the two cases is
explained by the different density, toroidal field and plasma-vessel distance taken in the simulations of the two
devices.

A unified description of the EF penetration in the two devices is now presented. According to equation (77) of
[5], the EF amplitude threshold obtained with a full stationary model is expressed in terms of the normalized total
radial field at the vacuum vessel |b,(r;,)|nr/ By times the factor r;, E,s /7y, , Which compensates for the plasma-
vessel proximity dependence of |b,.(r,)|. Therefore, that equation suggests using the metric |b,(%;,)|inr/Bg X
1, Eys /T 10 express the EF threshold. We run several simulations by performing a scan in density and toroidal
field. In the JET case we also perform a size scaling by considering besides the actual geometry (R, = 3) two
hypothetical further cases, R, = 4, R, = 1.5, with the other lengths varied in proportion. Then we take a
multivariate regression of the EF penetration threshold with the scan parameters. The result is the following:

23) RFXmod2 — |b.(1,)|thr/Bg X 1y Eps/Tin = 9.5 X 1O_4né'13i°'°1B;1'54i°'°3

24) JET(Ry = 3) — |by(r)lenr/Byp X 1y Eps/Tinpn = 9.6 X 10—4n2.98i0.013;1.48i0.02

25) JET(Ry = 1.53,4) = |b.(1)|enr/Byp X Ty Eys /T = 7.7 X 10740002001 p 1492002 p 190,02
26) JET(Ro = 1.5,3,4) = |b.(1,)|enr/Byp = 2.7 X 1074} 002001 p_145£002 pl.192£0.02

In the above expressions n, is given in 101°m™=3 units. Regression (24) refers to the actual JET size, whereas (25)
includes the size scaling so it contains R, as additional parameter. Regression (26) discards the 7, E,s /7, ,, term,
so it differs from (25) only by a global factor. As shown in figure 2 the quality of the fits (23), (24), (25) is very
good. Moreover, scaling laws (25) aligns almost perfectly the RFXmod2 and JET simulated thresholds, despite
the different layout of the two devices, whereas (26) does not: see figure 3. Therefore, only the metric
|br- (1) |¢nr /By X 1y Eys /Tin n Provides a unified picture of the phenomenon. Expression (25) also confirms, with
full dynamical simulations, the steady-state result of [6]. The size dependence in (25) is not strong, but the scaling
with R, is clearly positive. As explained in [6] this result is obtained thanks to the equality t,, = 'g;, whereas the
more customary assumption t,, = 5, with 7 the total energy confinement time, leads to a negative scaling with
R, in ohmic conditions. Experimentally, this is the most difficult dependence to be assessed. As discussed in [25],
the scaling with R, is positive, and the exponent should be about 0.2 (the exponent 1.4 obtained in one of the
regressions presented in [25] is doubtful according to the authors). The density and toroidal field exponents are in
good agreement with the result of [25]. Expression (24) is also quite close to the scaling |by|in,/Bg o
ngo4£0.06 g1 2£0.95 obtained in JET discharges [26].

The analysis just discussed highlights |b,.(1;)|¢nr/Bg X 1, Eys /T n @ @ metric able to unify experiments with
different layout. In other words, it can be used to extrapolate, within a cylindrical approximation, the experimental

EF threshold data obtained in one device to any other device. Of course, in this extrapolation a dependence R§
with @ = 0.2 needs to be included to account for the different machine sizes. To this purpose, RFX-mod2 [10,
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11] operated as a tokamak will be particularly suitable to perform EF penetration studies for several reasons. First,
RFX-mod2 benefits of a close-fitting stabilizing shell, which should make the tokamak plasma stable to tearing
modes, the ideal condition to perform this study. Second, the full coverage of the torus by active coils and the
circular cross section of the device allow the application of EF with quite pure helicity, net of the toroidal coupling
which unavoidably enriches the content of poloidal mode numbers m. Moreover, plasma with different shapes,
from the circular to the X-point can be realized by the field shaping coils system. Finally, the large number of
magnetic sensors allows a precise detection of the phenomenon. The results, expressed in term of the above
universal metric, will be useful to make extrapolations to other machines not yet in operations.

, , , 0,4
JET RFX-mod2
210*
10,002
=
5000 ¢
2] 2]
3 3 3 J 3
E . -'3110“ 5
40,001
— b (r)l
b (r)I
O 1 1 1 1 1 1 1 0 0 L 1 1 1 1 0
0 2 4 6 8 10 12 14 o 02 04 06 08 1
time(s) time(s)

FIG. 1. Dynamical simulation of the EF penetration for JET (left) and RFXmod2 (right). In the JET case we take n, =
102°m=3, By, = 2.2T. In the RFXmod2 case we take n, = 1.3 x 10**m~3, B, = 0.5T. EF penetration corresponds to the
instant where w drops to zero.

oo1 | ™ JET:R=3,4,15 N
4 JET:R =3 w
c 0 v
oF v RFX-mod?2 f
2
L
‘_>
S 0,001 - }&‘ J
ms
<, xb
= v
e x
=~ N
Ko}
= 0,0001 |- {k .
[\
[ 3
[N
0,0001 0,001 0,01

eq. (25); eq (24); eq(23)

FIG. 2. EF penetration threshold in terms of |b,.(7;,)|¢nr/ By X 1, Eys /T, s function of scaling laws (23) for
RFXmod2, (24) for JET, and (25) for JET with size scaling

4. CONCLUSIONS

Simulations of EF penetration have been carried out for cylindrical proxy of JET and RFX-mod2. This has been
accomplished by the RFX-locking code, already used to simulate the tearing mode dynamic [9], with the inclusion
of recently developed specific physics to model the linear plasma response to a resonant EF [5]. The results
confirm previous theoretical analysis [6] and are in good agreement with experimental scaling laws [25, 26]. We
also propose to express the EF threshold in a metric able to unify machines with different front-end systems:
indeed the predictions for JET and RFX-mod2 superimpose almost exactly in this metric (figure 3, left). This
metric will be important to extrapolate the results of the next EF penetration experiments planned on RFX-mod2.
Finally, we give an estimate of the EF threshold expected in the ohmic ITER plasma on the basis of (25): by taking
Ry = 6.2m, By = 5.3T, n, = 10*°m™3, q(a) = 3.3, 1,,,/1, = 0.7, E,s = 2, one gets |b, (1) |¢nr /By = 3 X
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10~*, which is significantly larger that the EF normalized value = 5 x 10~>expected after correction with the
Error Field Correction Coils [27].

4 ‘R = 4 ‘R =
001 JET:R =3 w JET:R =3 .
£ v RFX-mod2 w ¥ RFX-mod2 v
=, ‘,f 0,001 | iv
w - 4
> J’ Q 4V
x _£ 4
0,001 / = 47
=_ ~_ v
:5 v 2 A
= v 0,0001 |- v A
2 4av 4
0,0001 | A . a
4
4
. . . 10° - . .
0,0001 0,001 0,01 10 0,0001 0,001
eq. (25) eq. (26)

FIG. 3. EF penetration threshold in terms of |b,.(7;,)|¢nr/ By X 1y Eys /T as function of scaling law (25)(left),
and in terms of |b..(7;,)|¢nr-/ By as function of scaling law (26)(right) for RFXmod2 and for JET,
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