
CHOI et al. 

 
1 

CONFERENCE PRE-PRINT 

 

LEVERAGING TURBULENCE DATA FROM FUSION EXPERIMENTS 
 

M.J. CHOI, J.-M. KWON, J.W. KIM 

Korea Institute of Fusion Energy 

Daejeon, Republic of Korea 

Email: mjchoi@kfe.re.kr 

 

G.J. CHOI 

Korea Advanced Institute of Science & Technology 

Daejeon, Republic of Korea 

 

T.S. Hahm 

Seoul National University 

Seoul, Republic of Korea 

 

Abstract 

Recent advance in plasma diagnostics allows turbulent fluctuation measurements of plasma density or temperature 

even in two-dimensional space in fusion experiments. Extracting more information from turbulence data would be crucial for 

a deeper understanding of plasma turbulence transport. In this manuscript, some spectral and statistical analysis methods that 

can be complementary to each other are introduced along with their application revealing distinguished pedestal turbulence 

characteristics between the spontaneous edge localized mode (ELM) free phase and the ELM suppression phase by the resonant 

magnetic perturbation (RMP) field. In the former case, the saturation mechanism of the pedestal turbulence can be identified. 

The turbulence was saturated by modulational couplings between high frequency pump modes and low frequency modulating 

modes, and the fluctuations exhibit a chaotic behavior. In the latter case, the growth mechanism of the pedestal turbulence can 

be discussed with observations that are not inconsistent with relevant theories and numerical simulations. The strong 

bicoherence and chaotic behavior in low frequency fluctuations implies that the resonance between a magnetic island and drift 

waves might be responsible for the enhancement of low-k fluctuations during the RMP ELM suppression transition. On the 

other hand, the stochastic behavior in high frequency (high-k) fluctuations suggests that these fluctuations might arise in 

associated with tangled small scale magnetic fields around the island. Besides these conventional analyses, further methods 

for leveraging the turbulence data with the physics informed neural network would be also discussed. 

1. INTRODUCTION 

Fluctuation measurements of various plasma fields such as density and electron temperature are now routinely 

available in many fusion plasma experiments [1]. The beam emission spectroscopy (BES) and the microwave 

imaging reflectometry (MIR) have been developed to measure the local plasma density fluctuation, and the 

electron cyclotron emission imaging (ECEI) diagnostics for the electron temperature fluctuation. Their analyses 

have revealed various characteristics of low-k plasma turbulence and advanced our understanding of turbulence 

transport in fusion experiments.  

In this paper, analysis methods for leveraging the measured turbulent fluctuation data [2] are briefly introduced 

with some examples. Depending on purposes and conditions, a proper analysis method or the combination of 

methods can be used to extract more information from data. The linear and nonlinear spectral methods can provide 

the frequency or wavenumber spectrum and detect high order couplings among fluctuation components (Section 

2). These methods would be effective when there exist a few dominant coupling processes per each coupled triad 

(or quartet). To deal with more complicated systems with the large number of nonlinear couplings, the statistical 

perspective and methods would be helpful (Section 3). The spectral and statistical methods can be complementary 

to reveal in-depth information buried in fluctuation data. As an example, the distinguished characteristic of 

pedestal electron temperature fluctuations between the spontaneous edge localized mode (ELM) free phase and 

the ELM suppression phase by the resonant magnetic perturbation (RMP) field would be demonstrated (Section 

4). In addition, it would be discussed that recent developments of the physics informed neural network can allow 

leveraging turbulence data in novel ways including the turbulence model validation and the prediction of a missing 

field (Section 5).  
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2. SPECTRAL METHODS 

2.1 Frequency spectrum 

A frequency spectrum is the most fundamental analysis of time series data, providing an estimate of fluctuation 

power at each frequency. The discrete Fourier transform (DFT) is often used to estimate the frequency spectrum 

of uniformly discrete stationary time series data [3]. The wavelet [4] or the maximum entropy method [5] based 

spectrum can be also considered when a stationary analysis period is too short or the obtained data length is 

limited. Or, if the data is sampled unevenly, the Lomb-Scargle periodogram [6] can be used to estimate the 

frequency spectrum. 

There is always noisy component in the measured signal from real experiments, and identifying or suppressing 

noise levels in the frequency spectrum has been of particular importance. One of well-known methods to suppress 

noises utilizes that noises are often rapidly decorrelated in time or space [7]. Thermal noise and shot noise are 

typical examples of noises characterized by short correlation ranges. Diagnostic channels can be prepared to be 

separated by a proper distance that is sufficient for noises to be decorrelated but still within the correlation range 

of a physical component. For example, decorrelated noises in two time series data 𝑥 and 𝑦, obtained by channels 

separated by a spatial distance 𝒅, can be reduced by the ensemble average in calculation of the cross-power 

spectrum ⟨XY∗⟩, while the physical component remains because of its coherent phase relationship δ𝑥𝑦 = 𝒌 ⋅ 𝒅 

which is characterized by the wavenumber 𝒌 of the physical component (see Fig. 1). 

 

FIG. 1. The Fourier transform coefficient (𝑋 or 𝑌) contains both a physical component (𝐺𝑥 or 𝐺𝑦) and an additive noise 

component (𝑅𝑥  𝑜𝑟 𝑅𝑦). The auto-power spectrum ⟨𝑋𝑋∗⟩ provides the estimate of the total power. The cross-power spectrum 

⟨𝑋𝑌∗⟩ with the large number of ensemble (𝑁) can suppress the noise component, i.e., 𝑃𝑥𝑦 ≈ 𝐺𝑥𝐺𝑦, because adding up the 

components with the random phase would be like the random walk in the complex plane, whose the amplitude (𝑅) and phase 

deviation (𝜉) decay with 𝑁.  

The above noise suppression method, however, cannot be applicable if either the noise is not additive and has a 

long correlation time or the multi-measurements are not available. Firstly, we can consider a situation where a 

multiplicative component with the long correlation time is involved, instead of an additive and short-correlated 

noise. Signals of fusion plasma turbulence diagnostics can depend on the product of multiple plasma fields such 

as density and temperature, and if one of them exhibits a long correlated noisy character, then it can distort the 

ordinary DFT based spectral analysis and hinder the identification of a Fourier mode in the other field. In such a 

case, the Laplace or robust coherence [8] can be used to identify the Fourier mode. It utilizes the median regression 

to find the Fourier coefficients, making it more robust against the outliers. Secondly, when we have only a single 

measurement, the orthogonal wavelet based denoising method can be considered [9]. Based on a priori assumption 

that the noise is additive and white-Gaussian, and a recursive algorithm was devised to estimate a noise level in 

each step during which the wavelet coefficients smaller than the noise level are removed. The noise characteristic 

can be checked a posteriori. 

2.2 Nonlinear mode coupling 

The higher order spectral methods can be used to detect the mode-mode coupling in signals. These methods are 

based on a definite phase relation among the coupled Fourier modes. For example, a nonlinear three-wave 
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coupling can be identified using bicoherence [10], and a four-wave coupling using tricoherence [11]. For the two-

dimensional representation of a modulational four-wave coupling, a modulogram was devised as follows [12]. 

MG(𝑓𝑝, 𝑓𝑚) = ⟨𝑋2(𝑓𝑝)𝑋∗(𝑓𝑝 + 𝑓𝑚)𝑋∗(𝑓𝑝 − 𝑓𝑚)⟩ 

It can detect the spectral coupling among a pump wave 𝑓𝑝, an amplitude modulating wave 𝑓𝑚, and two sidebands 

𝑓𝑝 ± 𝑓𝑚.  

3. STATISTICAL METHODS 

Spectral methods to detect nonlinear couplings introduced in the previous section would be effective when there 

exist only a few dominant coupling processes per each triad (or quartet), keeping the (temporarily) coherent phase 

relationships identifiable. In a more complicated system composed of the great number of comparable and 

interchanging nonlinear couplings, it may be difficult to expect one particular nonlinear relationship to be 

distinguished from others. Then, the evolution of a physical quantity 𝜙(𝑡) can be described using a Langevin-

type equation where effects of all processes are summed up into a stochastic process: 𝜙(𝑡) = 𝜙0 + ∫ 𝑑𝑡′ 𝜉(𝑡′)
𝑡

0
. 

3.1. Gaussian or non-Gaussian 

One may think that the most natural choice for the distribution of 𝜉(𝑡) is a Gaussian distribution, stemming from 

the central limit theorem (CLT). The CLT states that a sum of 𝑁 independent and identically distributed random 

variables, 𝑠𝑁 = ∑ 𝑥𝑛
𝑁
𝑛=1 , obeys a Gaussian distribution as 𝑁 → ∞ when the first and second moments of 𝑥𝑛 do 

not diverge. It is actually a special case of the limiting (𝑁 → ∞) distribution for the sum 𝑠𝑁 when 𝑥𝑛 has the 

finite moments. Mathematically, any stable distribution can be the limiting distribution of 𝑠𝑁 for some 𝑥𝑛, and 

the Gaussian distribution is a special case of Lévy stable distributions. When the distribution of 𝑥𝑛 itself has a 

power-law heavy tail not to have finite first or second moment, the limiting distribution of 𝑠𝑁 becomes a non-

Gaussian Lévy distribution. The Gaussian distribution is not the only natural choice for the distribution of 𝜉(𝑡). 

Analysis of statistical properties of measured turbulence data would provide a hint on the underlying process. 

Calculating the higher order moments (skewness or kurtosis) of the 𝜙(𝑡) increments, Δ𝜙(𝜏) = 𝜙(𝑡 + 𝜏) −
𝜙(𝑡), can tell whether the underlying distribution is close to a Gaussian or not. Skewness (Kurtosis) close to zero 

(three) corresponds to a Gaussian distribution, and they deviate from those values for a non-Gaussian distribution. 

Non-zero skewness (non-three kurtosis) implies that the finite bicoherence (tricoherence) is identifiable.  

3.2 Stochastic or chaotic 

Whether measured turbulence data is close to signals generated by a stochastic process such as the fractional 

Brownian motion (fBm) and the fractional Gaussian noise (fGn) or chaotic signals generated from deterministic 

systems having a low dimensional nonlinearity can be distinguished using the complexity-entropy analysis [13]. 

Here, entropy and complexity are information theoretic terminologies with specific meanings. Entropy means a 

measure of missing (unknown) information of the given probability distribution. It has the maximum for the 

equiprobable distribution because one can learn almost nothing from the equiprobable distribution. Complexity 

was suggested as the product of disequilibrium and entropy (missing information) to capture the intuitive notion 

about a complex system [14]. Disequilibrium is a measure of distance from the equiprobable distribution. The 

Jensen Shannon divergence is used for disequilibrium for the complexity-entropy analysis [13]. The idea of 

complexity can be understood by two examples [14] of simple (not complex) system in physics, i.e., a perfect 

crystal and an ideal gas. A perfect crystal, represented by a peaked probability distribution of states, has very small 

missing information but large disequilibrium, and their product complexity will remain small. On the other hand, 

an ideal gas, represented by an equiprobable distribution of states, has large missing information but very small 

disequilibrium, and their product complexity also will remain small. It was shown that signals from various chaotic 

systems (the logistic map, the skew tent map, Henon’s map, etc.) and signals from stochastic processes (fBm and 

fGn) can be separated in the complexity-entropy plane [13].  

The analysis starts with calculating the probability distribution of amplitude orders in partial segments of given 

time series data, called the Bandt-Pompe (BP) probability distribution [15]. Using the BP probability distribution 

of a given data 𝑃 = {𝑝𝑗}
𝑗=1,…,𝑑!

 where subscript 𝑖  represents each amplitude order, the Jensen Shannon 

complexity 𝐶JS and the normalized Shannon entropy 𝐻, which are the basis of the complexity-entropy analysis, 
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can be calculated. The Jensen Shannon complexity (𝐶JS = 𝑄𝐻) is defined as the product of the normalized 

Shannon entropy 𝐻 =
𝑆

𝑆max
 and the Jensen Shannon divergence 𝑄. Here, 𝑆 = 𝑆(𝑃) = − ∑ 𝑝𝑗 ln(𝑝𝑗 )𝑗  is the 

Shannon entropy of the given BP probability distribution and 𝑆max  is the maximum possible Entropy, i.e., 

𝑆max = ln(𝑑!) with the equiprobable distribution 𝑃e = {𝑝𝑗} =
1

𝑑!
. The Jensen Shannon divergence is given as 

𝑄 = 𝑄0 {𝑆 (
𝑃+𝑃𝑒

2
) − 𝑆 (

𝑃

2
) − 𝑆 (

𝑃𝑒

2
)}  where 𝑄0  is the normalization constant 𝑄0 = −2/(

𝑑!+1

𝑑!
ln(𝑑! + 1) −

2 ln(2𝑑!) + ln(𝑑!)). Chaotic signals locate close to the maximum complexity boundary in the complexity-entropy 

plane, and they move to the locus of points of fBm and fGn signals in proportion to the level of the additive 

Gaussian noise [16].  

The rescaled complexity was suggested as a simple evaluation metric for the degree of chaos in signals [17]. It is 

defined as follows. 

𝐶̂ =
𝐶JS − 𝐶0

|𝐶bdry − 𝐶0|
 

where 𝐶0  is the Jensen Shannon complexity of fBm or fGn and 𝐶bdry  is the maximum (if 𝐶JS > 𝐶0 ) or 

minimum (if 𝐶JS < 𝐶0) Jensen Shannon complexity at the given 𝐻. The rescaled complexity (𝐶̂) ranges from -1 

(𝐶JS = 𝐶min) to 1 (𝐶JS = 𝐶max), and the less 𝐶̂  means the less chaotic or the more stochastic in the relative 

comparison. 

4. DISTINGUISHED CHARACTERISTICS OF PEDESTAL TURBULENCE  

4.1. Spontaneous ELM-free phase 

In the KSTAR H-mode plasmas, the growth and saturation of 

the broadband (0—170 kHz) electron temperature ( 𝑇e ) 

fluctuation near the pedestal top are observed for a short 

spontaneous ELM-free phase (Fig. 2(a)) [17]. The appearance 

of ELM-free phase seems to be related with the enhanced 

particle flux (the 𝐷𝛼 baseline was noticeably increased during 

the ELM-free phase). The enhanced 𝑇e  fluctuation might 

contribute to the enhanced particle flux, but this is uncertain (the 

fluctuation level jumps significantly after 3.20 sec, but not the 

𝐷𝛼 baseline) and not discussed here. Instead, the fluctuation 

characteristics and the saturation process of turbulent 

fluctuation are investigated.  

The zonal flow generation via the modulational instability of 

drift waves is one possible route of the nonlinear saturation of 

drift wave turbulences [18, 19]. A linearly unstable pump mode 

is saturated by the nonlinear energy transfer to the sidebands 

and the zonal flow. According to this scenario, the nonlinear 

oscillations between the zonal flows and the drift wave intensity 

can exhibit a chaotic behavior at the certain parameter regime 

[19]. 

Complementary analyses using both spectral and statistical methods suggest that turbulent 𝑇e fluctuations in the 

KSTAR ELM-free pedestal are saturated via the modulational instability and the modulational coupling among 

the fluctuations results in the more chaotic behavior of the fluctuation, which is not inconsistent with the 

theoretical scenario [19]. Modulogram of the 𝑇e fluctuation in Fig. 2(c) reveals four-wave couplings among 

pump modes (~100 kHz), low frequency modulating modes (< 20 kHz), and the sidebands when the total 

integrated RMS amplitude of the fluctuation is saturated. Also, the rescaled complexity of the 𝑇e fluctuation in 

Fig. 2(b) shows that the fluctuation becomes more chaotic during the saturation phase. This example demonstrates 

that complementary spectral and statistical methods allow for extracting more comprehensive information about 

turbulence saturation process. 

FIG. 2. (a) The 𝐷𝛼 emission (black) and the root 

mean square (RMS) amplitude of the normalized 𝑇𝑒  

fluctuation at the pedestal top. (b) The rescaled 

complexity of the 𝑇𝑒  fluctuation. (c) Modulogram 

for a fluctuation saturation period. 
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4.2. RMP ELM suppression phase  

In the KSTAR 𝑛 = 1 RMP ELM suppression experiment [20], the transition from the RMP ELM mitigation to 

the RMP ELM suppression is accompanied by the significant growth of broadband (0—70 kHz) 𝑇e fluctuations 

as shown in Fig. 3(a). Note that these fluctuations exhibit an almost linear dispersion relation in the laboratory 

frame. The nonlinear coupling and the statistical characteristics of the fluctuation is investigated to understand the 

origin of the fluctuations, which is summarized in Fig. 3(d).  

The bicoherence analysis finds that the strength of three-wave couplings among fluctuations below 20 kHz is 

increased in correlation with the growth of the fluctuation during the ELM suppression transition as shown in Fig. 

3(c). It is peaked at the early phase of the ELM suppression and maintained at the higher level (than that in the 

ELM mitigation phase) for the entire ELM suppression phase.  

A numerical study suggests that the RMP field penetration and the onset of a magnetic island near the pedestal 

top can lead to the ELM suppression [21]. Also, a theoretical study shows that drift waves can arise from the 

resonance with a magnetic island of the comparable size when the island frequency is in between the electric drift 

frequency and the diamagnetic drift frequency [22]. The frequency condition can be satisfied at the moment of 

the RMP field penetration [17]. The enhanced low-k (low-frequency) fluctuations and bicoherence among them 

can be attributed to the nonlinear resonance between the island and drift waves.  

On the other hand, the rescaled complexity analysis reveals that the enhanced high-k (high-frequency) fluctuations 

after the ELM suppression exhibit a relatively stochastic behavior, while the low-k fluctuations are more chaotic 

as expected from their enhanced bicoherence. Given the low-k fluctuations and high-k magnetic field 

perturbations, a theoretical study shows that the high-k fluctuations can arise to maintain the quasi-neutrality 

condition at all scales [23]. These high-k fluctuations, coupled to the tangled high-k fields around the island, can 

exhibit the stochastic behavior as indicated by the lowered rescaled complexity. 

5. APPLICATION OF PHYSICS INFORMED NEURAL NETWORKS 

The above example of turbulence data analysis shows that complementary spectral and statistical methods can 

allow a deeper understanding of the fluctuation characteristics. However, these analyses should have been 

extended if fluctuation measurements of additional plasma fields such as the velocity field were available.  

Compared to measurements of plasma density and electron temperature fluctuations, accurate and high-resolution 

measurement of velocity fluctuation is more challenging in fusion plasmas. Direct measurement of the velocity 

FIG. 3. (a) The 𝐷𝛼 emission (black) and the root mean square (RMS) amplitude of the normalized 𝑇𝑒  fluctuation at the 

pedestal top. (b) The rescaled complexity of the low (< 20 kHz) and high (> 20 kHz) frequency components of 𝑇𝑒  fluctuation. 

(c) Total bicoherence in the low frequency components of 𝑇𝑒  fluctuation. (d) A physical interpretation of observations.  
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fluctuation is often limited in the particular wavenumber or real space. Indirect methods utilizing two-dimensional 

density or temperature fluctuation measurements in time are vulnerable to noises [24].  

Recently, the missing field prediction using the physics informed neural network (PINN) [25—27] and 

measurements of other physically related fields has been demonstrated [28]. For the practical application for two-

dimensional turbulent velocity field prediction in fusion plasmas, effects of the noise and the spatial resolution of 

available data are investigated in the two-dimensional Navier-Stokes system and the Hasegawa-Wakatani (HW) 

system, respectively [2]. These investigations show that missing fields of a physical system can be predicted better 

when the signal-to-noise ratio and the spatial resolution of the provided data are higher. As an example, Fig. 4 

shows that the PINN can learn a solution of HW equations that matches the density (𝑛) data, predicting the missing 

potential (𝜙) and vorticity (Ω) fields. The density data were taken at regular spatial and temporal intervals as in 

the experiment, and provided to train PINN with additional constraints from HW equations. As the spatial 

resolution of provided density data is varied, the PINN could capture the key characteristics of the potential field 

down to the 12 x 6 resolution case.  

 

FIG. 4. The PINN predictions of the density, potential, and vorticity fields in the Hasegawa-Wakatani system as the spatial 

resolution of provided density data is varied. Only the density measurements were provided to train the PINN with additional 

constraints from physics laws. The solution is shown at the top for reference. 

However, the missing field prediction using PINNs relies on the validity of the physics model, which leads to the 

problem of a turbulence model validation. The conventional wisdom in turbulence model validation is that only 

(ensemble averaged or time averaged) statistics of a model can be tested, not its dynamics. This is because 

turbulence model equations often include nonlinear terms exhibiting a chaotic behavior and matching initial and 

boundary conditions between experiments and simulations would be almost impossible.  

A more thorough model validation may be possible with the help of PINNs allowing leveraging all the information 

in the spatial-temporal dynamics of measured data. Basic idea of turbulence model validation using PINNs can 

be described as follows: (1) Consider a fluid turbulence model whose variables can be measured by a diagnostic 

in experiments. (2) Obtain a numerical solution of the model with experimental profiles and construct a reference 

(measurable) data set in the coordinates of the diagnostic, e.g., in (𝑅, 𝑧, 𝑡). (3) Find proper hyperparameters of 

PINN for it to learn the solution that matches the reference data. (4) Obtain the experimental measurements using 

the diagnostic and construct an experimental data set. Then, our hypothesis is that if the experimental data set is 

a subset of model solutions, PINN with the same hyperparameters should be able to learn a solution that matches 

the experimental data with the comparable accuracy. As a simple illustration, Fig. 5 shows that PINNs with wrong 

adiabatic coefficient 𝑐1 in the HW model [2] cannot find a solution that matches the given data well, since PINNs 

are trained by minimizing both physics loss (the deviation from the given model equations) and data loss (the 

deviation from the given data). 
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FIG. 5. Simple illustration of PINN prediction of the density field in the HW model with different adiabatic coefficients 

 
6.  SUMMARY 

Methods for leveraging fluctuation measurements in fusion experiments are introduced with an application 

revealing the distinguished turbulence characteristics in the pedestal region in the spontaneous ELM-free and 

RMP ELM suppression phases. The spectral methods are useful to identify different modes and investigate a 

dominant nonlinear coupling among them. The statistical methods tell whether the measured turbulent fluctuations 

should be described as a stochastic system or a low-dimensional chaotic system. On the other hand, recent 

developments of the physics informed neural network allow leveraging two-dimensional fluctuation 

measurements in novel ways, predicting a missing field or validating turbulence models. Given a validated physics 

model and turbulence data, the PINN can accurately reconstruct fluctuations of a missing field such as plasma 

velocity, provided that the data have a sufficient signal-to-noise ratio and spatial resolution. These methods would 

contribute to a better understanding of plasma turbulence transport in fusion experiments. 
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