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Abstract

In scenarios where a sustained energetic particle source strongly drives toroidal Alfvén eigenmodes (TAE), and phase-
space transport is insufficient to saturate TAE, this novel theory of TAE-zonal mode (ZM)-turbulence – self-regulated by
cross-scale interactions (including collisionless ZF damping) – merits consideration. Zonal modes are driven by Reynolds
and Maxwell stresses, without the onset of modulational instability. TAE evolution in the presence of ZMs conserves energy
and closes the system feedback loop. The saturated zonal shears can be sufficient to suppress ambient drift-ITG turbulence,
achieving an enhanced core confinement regime. The saturated state is regulated by linear and turbulent zonal flow drag. This
regulation leads to bursty TAE spectral oscillations, which overshoot while approaching saturation. Heating by both collisional
and collisionless ZM damping deposits alpha particle energy into the thermal plasma, achieving effective alpha channeling. This
theory offers a mechanism for EP-induced transport barrier formation, and predicts a novel thermal ion heating mechanism.

1. INTRODUCTION

Energetic particles (EP) are known to excite instabilities such as toroidal Alfvén eigenmodes (TAE) and ener-
getic particle modes (EPM), potentially leading to significant EP transport and so affecting fusion plasma con-
finement[1]. However, recent experiments yielded results that contradict this expectation, showing that EP can be
associated with improved thermal plasma confinement, through the formation of internal transport barriers (ITB)[2,
3, 4, 5, 6]. These findings highlight discrepancies between experimental results and previous theoretical predic-
tions for EP physics. In addition, conventional turbulent transport models don’t account for the effect of EP on
thermal confinement. To address these discrepancies, mechanisms have been proposed, such as fast particle di-
lution[7, 8], electromagnetic stabilization[9] and zonal mode (ZM) stabilization[10, 11, 12, 13]. ZM can address
two key problems: the saturation of EP-driven instabilities via ZM[4, 14] to prevent strong EP transport, and the
suppression of turbulence by sheared ZM[15] to form a transport barrier. The TAE/ZM system is an ideal frame-
work for studying these issues. TAE can spontaneously generate ZM via modulational instability, which requires a
threshold TAE amplitude[16]. Conversely, the directly driven (forced-driven) process[17, 18, 19, 20, 21, 14] does
not require a threshold TAE amplitude. The scenario of ZM drive by waves is a well-known paradigm for pattern
and structure formation, such as atmospheric jets, Jovian bands and drift wave-zonal flow (DW-ZF) turbulence in
tokamaks. Here, the new element is the presence of two wave populations - the TAEs and DWs - which couple
via the ZM. Meanwhile, the saturation mechanism for the directly driven process is lacking, especially the proper
mechanisms for ZM collisionless damping.

As we will show, with the sustained EP profile and strongly excited TAE, the interactions between TAEs and directly
driven ZM lead to an interesting self-organized state of the system, which arises from the feedback loop structure
as shown in Fig. 1: ZM is directly driven by TAE via Reynolds and Maxwell stresses, and damped by collisional
and collisionless drag processes. This, in turn, influences the evolution of the TAE via wave-ZM interaction.
ZM damping regulates the TAE saturation level and the oscillations of TAE and ZM as they approach saturation.
The geodesic acoustic transference (GAT) is a relevant collisionless damping mechanism, which requires sufficient
turbulent mixing to be effective. GAT heats ions nonlinearly, ultimately functioning as an alpha channeling process.
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FIG. 1. A feedback diagram for TAE and ZM with energy deposition from EP to thermals. TAEs directly drive the
evolution of the ZM through RS-MX stresses, while ZM appears in the TAE evolution equation in the form of a wave
coupling term, ensuring energy conservation and influencing the saturation process of TAE. The GAT process as a
collisionless damping mechanism for ZM, in which thermal plasma damps ZM and so is heated. The saturated ZM
can generate 𝐸 × 𝐵 shearing to suppress DW turbulence. The outer feedback (shown in regular font) and the inner
feedback (shown in italic font) on the right side represent a possible interaction between the TAE-ZF and DW-ZF
systems, when the shearing effect of the TAE-driven ZM on turbulence is included in the model.

EP transport is connected to thermal turbulence by cross-scale interactions. The shearing effect from the saturated
ZM can be sufficient to suppress DW turbulence, leading to a transport barrier for thermals.

2. PREDATOR-PREY MODEL FOR TAE AND ZM

To investigate the feedback interactions between TAE and ZM, we follow the notations in Refs.[18, 19], use 𝛿𝜙
and 𝛿𝐴∥ for scalar potential and parallel vector potential respectively, and define 𝛿𝐿 ≡ 𝛿𝜙 − (𝑣 ∥𝛿𝐴∥/𝑐), 𝛿𝜓 ≡
𝛿𝐴∥𝜔/(𝑐𝑘 ∥ ). Let 𝛿𝜙 = 𝛿𝜙𝑍 + 𝛿𝜙𝑇 , where 𝛿𝜙𝑍 is the zonal component and 𝛿𝜙𝑇 ≡ 𝛿𝜙0 + 𝛿𝜙0∗, with 𝛿𝜙0 and 𝛿𝜙0∗
having the opposite real frequencies. Therefore, a collision of two counter-propagating eigenmodes is considered
here. Using the ballooning decomposition in (𝑟, 𝜃, 𝜙), we have

𝛿𝜙0 = 𝐴̂0𝑒
𝑖
∫
𝑘̂𝑟,0d𝑟+𝑖 (𝑛𝜙−𝑚0 𝜃−𝜔0𝑡 )∑

𝑗𝑒
−𝑖 𝑗 𝜃Φ0 (𝑥 − 𝑗)

𝛿𝜙𝑍 = 𝐴̂𝑍𝑒
𝑖
∫
𝑘̂𝑍d𝑟−𝑖𝜔𝑍 𝑡

∑
𝑚Φ𝑍

where Φ0 above accounts for the fine scale structure of TAE, 𝐴̂0 is the envelope amplitude, and 𝑘̂𝑟 ,0 stands for the
radial envelope wave number. From the gyrokinetic nonlinear vorticity equation[22, 18, 19, 1], one can obtain the
nonlinear evolution of TAE 𝛿𝜙0 as equation (1):

−𝑘2
∥𝛿𝜓0 +

𝜔2
0

𝑉2
𝐴

𝛿𝜙0 =
4𝜋𝜔0𝑒

𝑐2𝑘2
⊥,0

⟨𝐽𝑘0𝜔𝑑𝛿𝐻𝑘0⟩E − 𝑖
𝑐

𝐵0

𝑘𝑍 𝑘 𝜃,0

𝑘2
⊥,0

(𝑘2
𝑍 − 𝑘2

⊥,0)
𝜔0

𝑉2
𝐴

𝛿𝜙0 (𝛿𝜙𝑍 − 𝛿𝜓𝑍 ) (1)

where E ≡ 𝑣2/2, k𝛿𝜙 = [𝑘 ∥ 𝑏̂ + 𝑘 𝜃𝜃 + ( 𝑘̂𝑟 − 𝑖𝑛𝑞′𝜕𝑥 lnΦ)𝑟]𝛿𝜙, 𝑉−2
𝐴 ≡ 4𝜋𝑛0𝑒

2𝜌2
𝑖 /(𝑐2𝑇𝑖), 𝐽𝑘 = 𝐽0 (𝑘⊥𝜌𝐿) is the

Bessel function, EP distribution function is 𝐹 = 𝐹0 + 𝛿𝐻. The ZM contributions are the second term on the R.H.S.
The breaking of the ideal MHD condition is expressed as:

𝛿𝜙0 − 𝛿𝜓0 = 𝑖
𝑐

𝐵0

𝑘 𝜃 𝑘𝑍
𝜔0

(𝛿𝜓𝑍 − 𝛿𝜙𝑍 )𝛿𝜙0 (2)

In equation (1), the integral ⟨· · · ⟩E ≡
∫ √

EdE of the fast particle distribution 𝛿𝐻 appears. This is obtained from
the nonlinear gyrokinetic equation:(

−𝑖𝜔 + 𝑣 ∥𝜕𝑙 + 𝑖𝜔𝑑 +Ω𝑍
)
𝛿𝐻𝑘 = −𝑖 𝑒𝑠

𝑚
𝑄0𝐹0𝐽𝑘𝛿𝐿𝑘 −

𝑐

𝐵0
Λ𝑘𝐽𝑘′𝛿𝐿𝑘′𝛿𝐻𝑘′′ (3)

where Λ𝑘 ≡ ∑
𝑘=𝑘′+𝑘′′ 𝑏̂ · k′′ × k′. Then the “linear” response to the TAE mode 𝛿𝜙0 is written as[23, 24]:

𝛿𝐻𝐿
0 = − 𝑒

𝑚
𝑄0𝐹0𝑒

𝑖𝜆𝑑0𝐽𝑘0𝛿𝐿0
∑
𝑙

(−1)𝑙𝐽𝑙 (𝜆̂𝑑0)𝑒𝑖𝑙 (𝜃−𝜃0 )

𝜔0 − 𝑘 ∥ ,0𝑣 ∥ − 𝑙𝜔𝑡 − 𝑖Ω𝑍
(4)

where 𝜔𝑑 = 𝑣̂𝑑,E (𝑘𝑟 sin 𝜃+𝑘 𝜃 cos 𝜃), 𝑣̂𝑑,E = (𝑣2
⊥+2𝑣2

∥ )/(2Ω𝑖𝑅0), 𝑄0𝐹0 ≡ (𝜔0𝜕E−𝜔∗)𝐹0, 𝜔∗𝐹0 = k ·b×∇𝐹0/Ω𝑖 ,
𝐿−1
𝑛0𝐸 ≡ −d ln 𝑛0𝐸/d𝑟 , Ω𝑖 is the thermal ion cyclotron frequency, Ω𝑍 ≡ 𝑐𝑘 𝜃,0𝑘𝑍 𝐽𝑍𝛿𝐿𝑍/𝐵0 ≃ 𝑘 𝜃,0𝑉𝐸×𝐵 is the
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nonlinear phase shift from ZM, 𝜆𝑑0 = 𝜆̂𝑑0 sin(𝜃 − 𝜃0), 𝜆̂𝑑0 = 𝑘⊥,0 𝜌̂𝑑,E , 𝜌̂𝑑,E = 𝑞𝑅0𝑣̂𝑑,E/𝑣 ∥ , tan 𝜃0 = 𝑘𝑟/𝑘 𝜃 ,
𝐽𝑙 (𝜆̂𝑑0) is the 𝑙-th order Bessel function of 𝜆̂𝑑0. For large parallel velocity, there is 𝜔𝑡 = 𝑣 ∥/𝑞𝑅0.

Multiplying equation (1) by 𝛿𝜙0∗, utilizing equations (2) and (4), and assuming a slowing down distribution function
𝐹0𝐸 = 𝑛0𝐸E−3/2/ln(E 𝑓 /E𝑐) with E𝑐 ≤ E ≤ E 𝑓 and E 𝑓 = 𝑣2

𝑓 /2 (E 𝑓 is the maximum fast particle energy, E𝑐 is the
critical energy of ions slowing down by the electrons), we have the evolution equation for |𝛿𝜙0 |2 or, equivalently,
a wave kinetic equation:(
1 −

𝑘2
∥ ,0𝑉

2
𝐴

𝜔2
0

)
𝜕𝑡 |𝛿𝜙0 |2 =

(
1 −

𝑘 ∥ ,0𝑉𝐴

𝜔0

)
𝜔𝐴𝜋

2𝜎
𝑞3𝑘 𝜃,0𝜌𝐴𝛽𝐸 𝑓𝑟

𝑅0

𝐿𝑛0𝐸
|𝛿𝜙0 |2 −

(
1 −

𝑘2
𝑍

𝑘2
⊥,0

−
𝑘2
∥ ,0𝑉

2
𝐴

𝜔2
0

)
2𝑐
𝐵0

𝑘 𝜃,0𝑘𝑍 |𝛿𝜙0 |2𝛿𝜙𝑍

(5)

Here we have only considered 𝑙 = ±1 transit resonances, 𝜔𝐴 ≡ 𝑉𝐴/(𝑞𝑅0), 𝜌𝐴 ≡ 𝑉𝐴/Ω𝑖 , 𝛽𝐸 ≡ 8𝜋𝑛0𝐸𝑚𝑖E 𝑓 /𝐵2
0,

𝜎 ≡ ln(E 𝑓 /E𝑐)E 𝑓 /𝑉2
𝐴, 𝑓𝑟 is a factor related to the fraction of resonant particles[23]. Equation (5) consists of

the usual linear growth from the wave-particle resonance (R.H.S. term ∝ |𝛿𝜙0 |2)[23, 24], and damping from the
nonlinear interaction between TAE and ZM (R.H.S. term ∝ |𝛿𝜙0 |2𝛿𝜙𝑍 ). Therefore, equation (5) can be cast into
the form of 𝜕𝑡 |𝛿𝜙0 |2 = 𝛾𝐿 |𝛿𝜙0 |2 − 𝛾𝑑 |𝛿𝜙0 |2𝛿𝜙𝑍 , as equation (10) discussed later.

The evolution equation for ZM is obtained from the zonal components of gyrokinetic vorticity equation as be-
low[22, 18, 19, 1]:

𝑒2

𝑇𝑖

〈
(1 − 𝐽2

𝑍 )𝐹0,𝑖
〉
E 𝜕𝑡𝛿𝜙𝑍 = −∑𝑠 ⟨𝑒𝑠𝐽𝑍 𝑖𝜔𝑑𝛿𝐻0⟩E,𝑍 + (RS-MX)𝑍 (6)

On the R.H.S., the first term is the curvature coupling term (CCT), where the bracket denotes an integral in velocity
space and then zonal-averaging. Because ⟨(· · · )𝛿𝐻𝐿

0 ⟩E,𝑍 = 0 with the linear EP response equation (4), so the
possible contribution of CCT to ZM only come from the nonlinear response of the distribution ⟨(· · · )𝛿𝐻𝑁𝐿

0 ⟩E,𝑍 ≠
0[18]. However, as a higher order response, the CCT contribution should be small. The second term accounts for
Reynolds and Maxwell stresses (RS-MX), which are primarily thermal contributions and can be included following
Refs.[25, 16, 18, 19]. Considering 𝑘⊥𝜌𝑖 ≪ 1 and 𝑘⊥ 𝜌̂𝑑,E ≪ 1, we have the evolution of zonal potential as:

𝜕𝑡𝛿𝜙𝑍 =
𝑐𝑘 𝜃,0𝐹̂

𝜒̂𝑖𝑍𝐵0

[𝑛0𝐸 𝜌̂
2
𝑑, 𝑓

𝑛0𝜌
2
𝑖

𝐺̂ +
(
1 −

𝑘2
∥ ,0𝑉

2
𝐴

𝜔2
0

)]
|𝛿𝜙0 |2 (7)

where 𝜒̂𝑖𝑍 ≡ 𝜒𝑖𝑍/(𝑘2
𝑍 𝜌

2
𝑖 ) ≃ 1.6𝑞2/√𝜀 is the neoclassical polarizability of ZM[26], 𝜌̂𝑑, 𝑓 ≡ 𝑞𝑣 𝑓 /Ω𝑖 . The two parts

in the bracket on the R.H.S. of equation (7) come from CCT and RS-MX, respectively. We corrected the results
from Ref.[18], and found that CCT is equivalent to a turbulent stress like RS-MX. They share similar structures:

(a) Both are proportional to the TAE amplitude |𝛿𝜙0 |2 and 𝐹̂ ≡ 𝑖(𝑘𝑟 ,0 − 𝑘𝑟 ,0∗), indicating that the collision of two
TAEs and the asymmetry of mode structure are necessary for ZM generation.
(b) Both exhibit polarization effects, either from gyro-motion or EP drift.
(c) Both require the breaking of ideal MHD condition 1 − (𝑘2

∥ ,0𝑉
2
𝐴/𝜔2

0) ∼ 𝜀 ≠ 0 (for CCT from 𝐺̂).

Because 𝐺̂ ∝ 𝜀 𝑓𝑟 |Ω∗𝐸/𝜔0 | and not every portion in EP density is at resonant ( 𝑓𝑟 < 1), we notice that:

CCT
RS-MX

∼ 𝑓𝑟𝑛0𝐸

𝑛0

𝜌̂2
𝑑, 𝑓

𝜌2
𝑖

����Ω∗𝐸
𝜔0

���� ∼ 𝑓𝑟𝑞
2 𝑃𝐸

𝑃𝑖

����Ω∗𝐸
𝜔0

���� ≪ 1 (8)

for the strongly driven scenario 𝑓𝛽 ≡ 𝑃𝐸/𝑃𝑖 ∼ 1, where 𝑃𝐸 = 𝑛0𝐸𝑇𝐸 , 𝑃𝑖 = 𝑛0𝑇𝑖 , 𝑇𝐸 ≡ 𝑚𝑖E 𝑓 , Ω∗𝐸 ≡
𝑘 𝜃𝐿

−1
𝑛0𝐸 𝑐𝑇𝑖/𝑒𝐵. Consequently, RS-MX predominantly drives the generation of ZM. Another issue in retaining

CCT [18, 19] as a ZF drive source is the necessity of a corresponding sink to ensure the energy conservation.
However, there is no such “sink” explicitly for CCT in other evolution equations to balance the energy transfer to
ZM. Given that the contribution of CCT is secondary and that energy conservation is essential, we omit the CCT
in equation (7) and later cast it in the form of equation (11).

Using a quasi-linear approach, we can estimate the effects of TAE on the EP distribution[27, 28]. Then the evolu-
tion equation of the EP profile, accounting for external EP sources such as neutral beam heating or ion cyclotron
resonance heating, is formally written as below:

𝜕𝑡𝑛0𝐸 = −𝐷res𝐹̂𝐿
−1
𝑛0𝐸𝑛0𝐸 + Source + · · · (9)

3
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where the TAE transport coefficient is 𝐷res ≃ 𝜋
2𝜎

𝑘2
𝑍 𝜌̂

2
𝑑, 𝑓𝑉𝐴 𝑓𝑟

𝑘∥,0

(
𝛿𝐵𝑟
𝐵0

)2
.

Now we can simplify the evolution of TAE and ZM, neglecting CCT, and rewriting equations (5) and (7) as equa-
tions (10)-(11):

𝜕𝑡 |𝛿𝜙0 |2 = 𝛾1 |𝛿𝜙0 |2 − 𝛾𝑑 |𝛿𝜙0 |2𝛿𝜙𝑍 (10)
𝜒̂𝑖𝑍𝜕𝑡𝛿𝜙𝑍 = 𝛾2 |𝛿𝜙0 |2 − 𝜈𝛿𝜙𝑍 (11)

where,
𝛾1 ≡ 𝜋𝜔𝐴

2𝜎
𝑞3𝑘 𝜃,0𝜌𝐴𝛽𝐸 𝑓𝑟

𝑅0

𝐿𝑛0𝐸
, 𝛾𝑑 ≡ 2𝑐

𝐵0
𝑘 𝜃,0𝑘𝑍 , 𝛾2 ≡ 𝑐

𝐵0
𝑘 𝜃,0𝐹̂𝜀

𝜈 = (𝜈𝑖𝑖 + 𝜈𝐺) is the damping of ZM. 𝜈𝑖𝑖 is the ion-ion collisional damping[29, 26] and 𝜈𝐺 stands for possible col-
lisionless damping. Here, 𝜈 is caused by interactions in thermal plasma, therefore, it will not affect the calculation
of EP-driven TAEs. Equations (9)-(11) constitute a system describing the dynamics of EP, TAE and ZM. Note
that for 𝜀𝐹̂/𝜒̂𝑖𝑍 = 𝑘𝑍 , the RS-MX terms cancel perfectly upon addition of the evolution equation for TAE and ZM
amplitude! This reflects energy conservation. This system is similar to the well-known “Predator-Prey” system[17,
29, 15], as shown in Fig. 1. Here we are focusing on the cases where EP profile is sustained by external sources,
continuum damping is negligible and wave-particle trapping is unable to saturate the TAE (𝛾1/𝜔0 > 10−2, see
equation (4.176) in Ref.[1]). In essence, this system is not near marginal. Hence, we further simplify the system
by hereafter ignoring the evolution equation (9) for EP. This simplified system manifests a closed feedback loop,
featuring a robust EP source, strongly excited TAEs, and ZM generation through RS-MX. Subsequently, the ZM
is damped and feeds back to the evolution of TAE through the nonlinear wave-ZM interaction, leading to the sat-
uration in both TAE and ZM. Assuming 𝛾1, 𝛾2, 𝛾𝑑 and 𝜈 are constants, the saturation levels are straightforwardly
obtained as below, showing that the saturation of TAE is controlled by the damping of ZM.

(𝛿𝜙𝑍 )𝑆 = 𝛾1/𝛾𝑑 (12)
(|𝛿𝜙0 |2)𝑆 = 𝛾1𝜈/(𝛾𝑑𝛾2) (13)

3. COLLISIONLESS ZM DAMPING

When only collisional damping is present and as 𝜈 = 𝜈𝑖𝑖 → 0, the TAE saturation level decreases, accompanied
by intense oscillations in both TAE and ZM ( 𝑓osc ∼

√
𝜈𝛾1/𝜔𝐴 when 𝜈 ≲ 4𝛾1). This can appear as an intermittent

(bursty) signal of TAE prior to saturation, and differs fundamentally from the quasi-periodic chirping caused by
profile relaxation[30, 31, 11]. Furthermore, this property emphasizes the crucial role of collisionless ZM damping.
Considering the significant oscillation of ZM when 𝜈𝑖𝑖 → 0, which can drive thermal ion and electron oscillations
in space, we introduce a simple mechanism for collisionless ZM damping, namely the geodesic acoustic trans-
ference[32, 33, 34]. According to Refs.[32, 33, 34], ZF couples with a pressure sideband through the geodesic
curvature coupling:

𝜕𝑡 ⟨𝑢̃𝑦⟩ = · · · − 𝜔𝐵⟨𝑝𝑠 sin 𝜗⟩ (14)

where 𝜔𝐵 ≡ 2𝐿⊥/𝑅, 𝐿⊥ = (𝐿𝑇 , 𝐿𝑛) is the perpendicular scale of thermal profile, ⟨𝑢̃𝑦⟩ is ZF, 𝜗 is the poloidal
angle, 𝑝𝑠 is the pressure sideband (𝑚 = 1, 𝑛 = 0). The evolution of electron pressure sideband can be expressed
as[34]:

𝜕𝑡 ⟨𝑝𝑒,𝑠 sin 𝜗⟩ = −𝜏−1
turb⟨𝑝𝑒,𝑠 sin 𝜗⟩ + 𝜔𝐵

2
⟨𝑢̃𝑦⟩ (15)

Here, magnetic flutter effects and ion flow sideband are neglected, defining 𝜏−1
turb ≡ 𝐷turb/𝐿2

⊥. A quasilinear tur-
bulent coefficient 𝐷turb ≃ Re

∑
k̃ 𝑖

𝑐2

𝐵2
0
|𝜙k̃ |2/(𝜔 − k̃⊥ · v𝐸) is assumed, with k̃⊥ representing the wave number of

the thermal turbulence and v𝐸 denotes 𝐸 × 𝐵 advection. The energy in the pressure sideband couples to thermal
particles, mostly via turbulent mixing and dissipation of parallel current[34]. The resonance of the thermal particle
turbulence with zonal 𝐸×𝐵 flows gives the irreversibility which underpins the turbulent mixing. In the collisionless
regime, resistivity should be weak, making turbulent mixing the dominant process.

Dedimensionalizing equations (10), (11) and (15) yields equation (16)-(18), respectively. Geodesic acoustic cou-
pling appears as the third term on the R.H.S. of equation (17).

𝜕𝜏𝑥 = 𝛾̂1𝑥 − 𝛾̂𝑑𝑥𝑦 (16)
𝜕𝜏𝑦 = 𝛾̂2𝑥 − 𝜈̂𝑖𝑖𝑦 − 𝛾̂𝐺1𝑧 (17)
𝜕𝜏𝑧 = 𝛾̂𝐺2𝑦 − (𝜔𝐴𝜏turb)−1𝑧 (18)
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Here 𝜏 ≡ 𝜔𝐴𝑡, 𝑥 ≡ |𝑒𝛿𝜙0/𝑇𝑖 |2, 𝑦 ≡ 𝑒𝛿𝜙𝑍/𝑇𝑖 , 𝑧 ≡ (1 + 𝜏𝑖)⟨𝑝𝑒,𝑠 sin 𝜗⟩, 𝜏𝑖 ≡ 𝑇𝑖/𝑇𝑒, 𝑝𝑒,𝑠 is the electron pressure
sideband normalized to equilibrium pressure. Coefficients are dedimensionlized:

𝛾̂1 ≡ 𝛾1

𝜔𝐴
, 𝛾̂𝑑 ≡ 2𝐷𝐵𝑘 𝜃,0𝑘𝑍

𝜔𝐴
, 𝛾̂2 =

𝛾̂𝑑
2
, 𝜈̂𝑖𝑖 ≡

𝜈𝑖𝑖
𝜒̂𝑖𝑍𝜔𝐴

,

𝛾̂𝐺1 ≡
𝐶2
𝑆𝑞𝑅0𝜔𝐵

𝑖𝑘𝑍𝐷𝐵 𝜒̂𝑖𝑍𝜔𝐴𝐿
2
⊥
, 𝛾̂𝐺2 ≡ (1 + 𝜏𝑖)

𝑖𝑘𝑍𝐷𝐵

𝑉𝐴

𝜔𝐵

2

where 𝐷𝐵 ≡ 𝑐𝑇𝑖/(𝑒𝐵0) and 𝜀𝐹̂/𝜒̂𝑖𝑍 = 𝑘𝑍 is applied. It’s easy to find the geodesic acoustic oscillation from
𝛾̂𝐺1𝛾̂𝐺2 = 𝜔2

GAM/( 𝜒̂𝑖𝑍𝜔2
𝐴), where 𝜔2

GAM ≡ 2(1 + 𝜏𝑖)𝐶2
𝑆/𝑅2 is the geodesic acoustic mode (GAM) frequency,

𝐶2
𝑆 ≡ 𝑇𝑒/𝑀𝑖 . The GAT can provide extra damping of the ZM, which is obtained from the static sideband 𝑧static =

𝛾̂𝐺2𝜔𝐴𝜏turb𝑦 and 𝛾̂𝐺1𝑧static as:

𝜈̂𝐺 =
1
𝜒̂𝑖𝑍

𝜔2
GAM

𝜔𝐴𝜏
−1
turb

∼ O(10−2) − O(10−1) (19)

Note that turbulent mixing is necessary for collisionless ZM damping here. When compared to 𝜈̂𝑖𝑖 ≤ O(10−4),
collisionless damping from GAT will be dominant.

4. SATURATION OF TAE AND ZM

The saturation of TAE. Specifically, using 𝑘2
𝑍 𝜌

2
𝑖 ≲ 𝑘2

⊥𝜌
2
𝑖 ∼ 𝜀2 and 𝑘 ∥ = 1/(2𝑞𝑅0), we obtain the saturation level

of TAE from equation (13) as: (
𝛿𝐵𝑟

𝐵0

)2

𝑆

∼ 𝜋𝑞2

4𝜎𝜒̂𝑖𝑍𝜀2
𝛽𝐸 𝑓𝑟 𝑘 𝜃,0
𝐿𝑛0𝐸

𝜈𝜌2
𝑖

Ω𝑖
(20)

This is directly proportional to the damping of ZM, akin to the case in the DW-ZF system[29, 15]. Equation
(19) demonstrates that turbulence can regulate the saturation of TAE through the ZM damping. In addition, if EP
transport is governed by TAE, since 𝜈̂𝐺 ∝ 𝜏turb, then as turbulence increases (indicated by the decrease in 𝜏turb),
the EP transport coefficient will decrease. However, as we will discuss latter, the shearing feedback of ZM on
turbulence will modify this straightforward conclusion.

Introducing 𝜏−1
Z ≡ 𝐷𝐵𝑘 𝜃,0𝑘𝑍 , we notice that when 3𝛾̂𝑑 𝛾̂2 ∼ (𝜔𝐴𝜏turb)−2 or 𝜏Z ∼ 𝜏turb, the system will oscillate

at the frequency of 𝜔GAM rather than 𝑓osc, which is similar to the results in Ref.[20]. This condition indicates that
the energy drained by ZM from the TAE equals to the energy dissipated by the pressure sideband. As a result, the
energy transfer will be controlled by GAT, leading to oscillations at 𝜔GAM. To generate such oscillations, we take
the Bohm coefficient 𝐷turb = 𝐷𝐵/16 and (𝜌𝑖/𝐿⊥)2 ∼ 0.02 in the subsequent analyses, ensuring 𝜏Z ∼ 𝜏turb and
1/(𝜔𝐴𝜏turb) ≪ 1. For typical parameters in tokamaks like DIII-D with 𝑞 = 1.5, 𝜎 ∼ 2.5, 𝛽𝐸 = 1%, 𝑓𝑟 = 0.25,
𝑘 𝜃,0 = 𝑛𝑞/𝑎 ∼ 10, 𝐿𝑛0𝐸 = 0.5𝑎, we have 𝛾̂1 ∼ 0.12, 𝛾̂𝑑 ∼ 0.1, 𝛾̂2 ∼ 0.05, 𝜈̂𝐺 ∼ 0.1, 𝛾̂𝐺1 ∼ −3.9𝑖, 𝛾̂𝐺2 ∼ 0.0012𝑖,
1/(𝜔𝐴𝜏turb) ∼ 0.045. The saturated TAE amplitude is (𝛿𝐵𝑟/𝐵0)2

𝑆 ∼ 10−7. Comparing this to the threshold for
spontaneous generation 𝜌2

𝑖 /(4𝜀(𝑞𝑅0)2) [16], yields a ratio of TAEsat/th ∼ O(10−1) − O(1). This suggests that
spontaneous generation is possible after the directly driven process saturates. A similar process is found for ITG
turbulence simulation[35, 36, 37]. The estimated EP transport coefficient using equation (9) is around 𝐷res ∼
O(10)m2/s, which exceeds the neoclassical value but is limited, and so does not cause severe EP transport. This
also facilitates the maintenance of a sustained EP profile through modulated heating, to align with the assumption
of a fixed linear TAE growth rate.

The saturation of ZM. The saturation level of zonal potential can be estimated from equation (12) as:

(𝛿𝜙𝑍 )𝑆 ∼ 𝜋

2𝜎
𝑇𝑖
𝑒

𝑓𝛽 𝑓𝑟𝑞
2

𝑘𝑍𝐿𝑛0𝐸
(21)

Then the ZF shear 𝜔𝐸×𝐵 ≡ 𝑐𝑘2
𝑍𝛿𝜙𝑍/𝐵0 is:

𝜔𝐸×𝐵 =
𝜋

2𝜎
𝑞2𝐷𝐵 𝑓𝛽 𝑓𝑟

𝑘𝑍
𝐿𝑛0𝐸

∼ 𝜋

2𝜎
𝑞2𝜀 𝑓𝛽 𝑓𝑟

𝐶𝑆

𝐿𝑛0𝐸

(22)

The radial scale of ZM 𝑘𝑍 is crucial in determining the saturation levels. Factors such as the fraction of EP pressure
𝑓𝛽 , the fraction of resonant particles 𝑓𝑟 and the EP gradient 𝐿−1

𝑛0𝐸 also influence the strength of ZF[12]. For the
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typical parameters mentioned previously, the ZF shear reaches around 0.3𝐶𝑆/𝑎 in regions where TAEs are excited,
a magnitude comparable to the ITG linear growth rate with dilution effect 𝛾ITG ∼ 0.1𝐶𝑆/𝑎 [38, 39]. Therefore,
the suppression of ITG turbulent transport can be anticipated. The threshold condition for shear suppression,
𝜔𝐸×𝐵 > 𝛾ITG, translates into a criterion for the TAE linear growth rate 𝛾TAE = 𝛾1/2 > 𝛾ITG𝑘 𝜃,0/𝑘𝑍 . This
criterion further implies a threshold for the strength of the EP source (e.g., from NBI heating). There may appear
to be a conflict concerning strong ZF shearing and necessary turbulence for ZM damping. However, since ZM
damping occurs via a pressure sideband, in a strongly (weakly) turbulent state, the pressure sideband weakens
(strengthens), resulting in strong (weak) ZM and shearing, and consequently facilitating reduction (enhancement)
of turbulence. Moreover, when 𝜏Z ∼ 𝜏turb, the GAM plays a role in dissipating EP energy in this system. In general,
zonal shears do affect DW and consequently regulate TAE, a process not explored in this paper. This interaction
could result in a dynamical 𝜈̂𝐺 and thereby influence EP transport. An example of the possible feedback involving
both the TAE-ZF and DW-ZF systems is shown in Fig. 1.

The 𝐸 × 𝐵 velocity caused by ZF can be estimated as:

𝑉𝐸×𝐵 ∼ 𝜋

2𝜎
𝑞2 𝑓𝛽 𝑓𝑟

𝐶𝑆𝜌𝑖
𝐿𝑛0𝐸

(23)

The heating power transferred from EP to thermals, estimated from equation (11) as 𝜈𝐺𝑉2
𝐸×𝐵 in steady state, can be

distributed to both ions and electrons (𝜏𝑖 ∼ 1) or predominately into electrons (𝜏𝑖 ≪ 1). The ZF phase shift (Ω𝑍 )
in equation (4) is smaller than the transit frequency (𝜔𝑡 ) by roughly two orders of magnitude. Thus, Ω𝑍 affects
near marginal transit resonance or trapped particle dynamics[14]. Modulation of wave-particle resonance by ZF
could lead mesoscopic structure such as the 𝐸 × 𝐵 staircase[40, 41].

5. CONCLUSIONS

This work introduces a novel Predator-Prey type theory for the collective dynamics of EP, TAE, turbulence and ZM,
which highlights the crucial role of collisionless ZM damping and predicts a novel alpha channeling mechanism.
This work presents a theoretical explanation for ITB formation driven by EPs through directly driven ZM, and a
new explanation of bursty TAE phenomena. These results may contribute to the development of a novel operational
scenario in future fusion devices like ITER. We assumed a sustained EP drive to eliminate EP profile relaxation,
which is a reasonable strategy for isolating the key new physics – the saturation of AE via collisionless ZM damping.
When the system is near-marginal, the interplay between the ZF shift, wave-particle trapping[42, 43, 44] and
stochastic scattering[45, 46] is also interesting. This model is relevant to scenarios without significant phase-
space transport. Without ZM, our model would lead to an unbounded TAE growth. The most direct correction
is to consider the growth rate feedback from profile flattening or by phase-space relaxation in future. In addition,
turbulence may also have effects on decorrelating EP phase-space clumps and holes[47]. Our model can serve as
a basis for understanding these issues in the future. Finally, this work explores novel cross-scale interactions in
fusion plasmas, introducing a compelling mechanism for transferring EP energy to thermal ions via ZM, while
facilitating the formation of a TAE-driven ITB to enhance thermal confinement.
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