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Abstract

Plasma shape control is a critical challenge in magnetic confinement fusion devices, where precise regulation of the
magnetic flux distribution is essential to achieve stable plasma configurations. Traditional control strategies often rely on lin-
ear approximation and decoupling solution based on the physical model, which multiple linear approximations are required to
achieve this step by step. Now reinforcement learning methods show great potential in solving highly complex, multidimen-
sional coupled problems. This work proposes a reinforcement learning-based framework to optimize plasma shape control on
superconductor tokamak through dynamic magnetic flux regulation. By formulating the control problem as a Markov deci-
sion process, the RL agent learns to coordinate the poloidal field coils power supply to simultaneously stabilize the plasma
boundary and minimize flux deviations between boundary and X point. The observation of the RL agent has incorporated
historical temporal information to adapt to the complex dynamic response caused by the double-layer vacuum chamber in
the fully superconducting tokamak. A new reward design method is proposed to meet the requirements of ISOFLUX algo-
rithm and the voltage limited characteristics of superconducting tokamak. Numerical simulations and experimental valida-
tions demonstrate that the RL driven controller achieves improvement in shape tracking accuracy compared to conventional
proportional-integral-derivative methods. Furthermore, the system exhibits robust performance against magnetic perturbations,
maintaining the plasma boundary within 10~ Wb and 2+ 10™* T of the target equilibrium. This work highlights the potential
of data-driven reinforcement learning in bridging the gap between magnetic flux physics and high precision shape control for
nextgeneration fusion reactors.

1. INTRODUCTION

Tokamak is a toroidal magnetic confinement fusion device that utilize strong magnetic field to confine a high-
temperature plasma within a toroidal vacuum chamber, This enables deuterium-tritium fuel to undergo nuclear
fusion reactions at temperatures reaching several hundred million degrees Celsius, resulting in the release of
substantial amounts of energv. Due to its environmental sustainability and high energy conversion efficiency, the
tokamak is widely considered one of the most promising approaches toward achieving a long-term solution to the
global energy crisis [1]]. Experimenta Advanced Superconducting Tokamak (EAST) is a fully superconducting
tokamak experimental device. Due to the fact that its coil is based on a superconducting design, is far from the
plasma, and the coil functions overlap, it leads to a strong coupling among current-driven, position-driven and
shape-driven. This poses a huge challenge to the control system [2].

Plasma shape control in EAST is effected by modulating the currents in external coils so as to regulate the
plasma’s position and geometry inside the vacuum vessel. Originally, only global parameters-elongation, triangu-
larity, and similar macroscopic metrics—were targeted, simply to maximise use of the available vessel volume [3].
The subsequent introduction of auxiliary heating schemes and strike-point management, however, has shifted the
control objective from these global parameters to finer, localised quantities such as the boundary magnetic flux or
the gap between the last-closed flux surface and the wall [4]. At present the experiment employs the ISOFLUX [5]]
algorithm, which enforces equality between the flux at a set of pre-selected control points and that at the X-point
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while simultaneously fixing the X-point location, thereby achieving sub-centimetre accuracy in shape reconstruc-
tion. By suppressing—or at least retarding—a variety of disruption-precursor instabilities, this high-precision
control appreciably broadens the operational window for stable, high-performance discharges [6].

Conventional control methods often rely on sequentially linearizing and manually decoupling the underlying
physical dynamics. This typically involves chaining together multiple piecewise linear approximations in a multi-
step process. In comparison, Reinforcement Learning (RL) has matured into a powerful and versatile framework
for decision-making in complex settings. Not only has RL achieved superhuman performance in specific games
[7], but modern RL—supported by deep neural networks and reward modeling—has also produced measurable
gains in real-world, high-dimensional applications. Like sim-to-real robotic manipulation [8], portfolio manage-
ment optimization [9]], and coordinated traffic signal control within urban power networks [[10]. Moreover, RL has
become essential for aligning large language models after training, substantially reducing hallucinations in sys-
tems like GPT and improving sample efficiency by orders of magnitude [11]]. As a result, RL is transitioning from
an experimental set of algorithms into an interpretable and verifiable universal decision-making architecture—able
to replace or enhance traditional control and optimization methods in highly complex, dynamic systems.

Magnetic confinement of plasmas exemplifies this trend. RL has been successfully integrated into various
plasma control scenarios, including shape control on TCV [12], tearing-mode stabilization on KSTAR [13]] [[14],
betap control on EAST [15]], and vertical displacement stabilization for ITER [16]]. By directly encoding control
goals into a scalar reward function, RL shifts the focus from "how to implement control’ to *what objectives should
be pursued’. Effective control policies are learned through model-free interaction, replacing intricate cascades of
hand-tuned classical controllers with a unified, end-to-end approach that greatly simplifies the design process.

In this study, we first train the agent through extensive interaction with a high-fidelity tokamak simulator
[17].The learned control policy is then deployed directly into the EAST plasma control system (PCS) [[18] and
evaluated through real-world experiments. As a fully data-driven approach, the agent is able to manage entire
discharge sequences without pre-programmed gain schedules. Even when the simulation does not fully match real
conditions, a carefully designed reward function effectively narrows the sim-to-real gap during operation. With
continued progress in artificial intelligence, RL stands out as a highly capable framework for dealing strongly cou-
pled, multi-input multi-output (MIMO) control challenges. Its growing adoption in fusion control systems points
toward a future where RL becomes a standard—rather than experimental—element of plasma control architecture.

2. BACKGROUND

2.1. Reinforcement Learning

Reinforcement learning is an important branch of machine learning. Its core idea lies in that the Agent con-
tinuously interacts with the Environment and learns the optimal decision-making strategy based on the obtained
reward signals to maximize the long-term cumulative return. This framework provides a strong theoretical basis
for solving sequential decision-making problems. In the standard reinforcement learning setting, the interaction
Process between the agent and the environment can be formally described through the Markov Decision Process
(MDP). An MDP can be represented by A five-tuple (S, A, P, R, ), where:

— S represents the set of all possible states of the environment;

— A represents the set of actions that the agent can perform;

— P(s'|s, a) represents the probability of state transition, describing the probability of transitioning to state s’
after performing action a in state s;

— R(s,a, ") is the reward function, which is used to evaluate the quality of state-action pairs;

— v € [0, 1] is the discount factor, which is used to balance immediate rewards and long-term returns.

The objective of the agent is to learn a strategy 7(a|s), which defines the probability distribution of choosing
action a in state s to maximize the expected discounted cumulative reward obtained from the initial state:

oo
J(’ﬂ') = EW[Z’th(Sha/hSFFI)] (1)

t=0
However, in actual control systems, agents often cannot directly obtain the complete state information of the
environment but can only acquire partial observations through sensors. For this reason, the Partially Observable
MDP (POMDP) provides a more applicable modeling framework. In POMDP, agents maintain an internal con-
fidence state of the environment based on current observations and historical interaction information, and make
decisions on this basis. Unlike traditional control methods, RL does not require prior knowledge of the precise
mathematical model of the system, but rather discovers the optimal behavioral strategy through a trial-and-error
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mechanism. At each time step, the agent selects an action based on the current strategy and executes it, and the
environment returns a reward signal and new observations. The design of the reward function R(s,a,s’) has a
crucial impact on the training effect: it not only needs to accurately reflect the ultimate goal of the task but also
provide sufficient learning signals during the exploration process. Overly sparse rewards can make it difficult for
agents to learn, while poorly designed reward functions may cause agents to learn behaviors that do not match
expectations. However, this design will allow researchers to shift their focus from model decoupling to more
direct task requirements.

2.1.1. Proximal Policy Optimization

In the context of sequential decision-making problems based on MDP, the goal of an agent is to learn an opti-
mal policy, i.e., a mapping from states to actions—through interaction with the environment. Proximal Policy
Optimization (PPO) [19] is a widely adopted and efficient policy search algorithm. Its core design objective is
to ensure stability during learning, namely, to avoid drastic performance oscillations and collapses during policy
updates, which is crucial for real-world applications such as robotic control.

PPO achieves this via a clever clipping mechanism that directly constrains the magnitude of policy updates
between consecutive iterations. The algorithm learns by optimizing a surrogate objective function, whose central
component is given by:

LCLIP(H) = Et[min(rt(Q)fit, cip(ry(0),1 —e, 1+ e)fit)] 2)

where, r;(#) denotes the probability ratio of selecting the same action under the new and old policies, and A,
is the advantage function, which estimates how much better or worse a specific action is compared to the average
in a given state. The clip operation restricts the policy update step to the interval [1 — &, 1 + ¢]. This mechanism
ensures that PPO updates the policy robustly toward performance improvement, while automatically avoiding
excessively large updates that could degrade performance.

To accurately estimate Ay, this study employs the Generalized Advantage Estimation (GAE) method [20]. The
core idea of GAE is to balance the bias and variance in the estimation. By introducing a decay parameter \, it
combines the prediction errors across different time steps to produce an advantage estimate that is both relatively
accurate and sufficiently stable:

AFAE =3 (N6, 3)
t=0

where §; represents the temporal difference error. By adjusting A, a smooth transition can be made between
high bias/low variance (as A — 0) and low bias/high variance (as A — 1). GAE provides PPO with high-quality,
low-noise policy evaluation signals, which is one of the key factors behind its high performance.

The PPO algorithm ensures training stability through its clipping mechanism, while the GAE technique con-
tributes accuracy via its effective bias—variance trade-off. The combination of these two components results in a
framework that achieves an exceptional balance among performance, stability, and implementation complexity,
making it a highly effective tool for solving complex continuous control tasks.

2.2. Shape Control On EAST

Shape control is achieved using poloidal field (PF) coils located outside the vacuum vessel. The control strategy
varies depending on the discharge phase of the plasma:

— During the current ramp-up phase, where the plasma shape changes rapidly, the shape control system regulates
only the position of the plasma current centroid (estimated via the E-matrix). The plasma evolves toward the target
configuration through feedforward current control.

— In the flat-top phase, to enhance discharge performance, precise shape control is applied. This involves obtain-
ing the magnetic flux values at specified control points on the plasma boundary—along with either the magnetic
field at the X-point or its actual coordinates—using real-time equilibrium reconstruction codes such as rtEFIT
or PEFIT. The plasma control system (PCS) then computes the required PF coil currents based on these values.
Subsequently, the appropriate voltage across each PF coil is determined according to the present coil current, and
voltage commands are issued to the power supplies to execute control, i.e. ISOFLUX algorithm [2[][2 I[[[22[][23]].

This study focuses on voltage-mode control during the flat-top phase. For shape control, the plasma is gen-
erally considered to be in a quasi-steady state, and the response time of the control loop is significantly longer
than the characteristic time of passive structures. Under this assumption, the effect of eddy currents induced in
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passive structures on shape control can be neglected. The response model thus primarily accounts for variations in
coil currents and the intrinsic plasma response. Under fixed equilibrium conditions, the plasma response model is
constructed by evaluating how differences in magnetic flux at control points and at the X-point respond to changes
in PF coil currents.

The control flowchart is shown in Fig. m In this scheme, the RL model replaces the PID module illustrated,
with fast-control coils decoupled and controlled separately. The agent participates in feedback control without
requiring current feedforward. It outputs PF voltage commands at 1kHz and determines the next command based
on real-time error values, thereby closing the control loop.
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FIG. 1. EAST ISOFLUX shape control algorithm flow

3. TRAINING AND PERFORMANCE VALIDATION IN SIMULATION

3.1. Basic elements of RL

In this study, we apply RL to control the plasma current (Ip), the magnetic field strength at the X-point in both
the R and Z directions, and the flux differences between the controlled points (1 ~ 6 and 8 ~ 9, excluding strike
point 7) and the X-point. On the EAST, the poloidal field (PF) system is unable to effectively respond to plasma
dynamics with characteristic timescales shorter than 20ms, due to limitations including the voltage constraints
of superconducting PF coils, the finite response time of power supplies, and the shielding effect of the vacuum
vessel against externally applied poloidal fields. As a result, the full penetration of external magnetic fields into
the plasma—reaching saturation—requires more than 20ms [17]. Consequently, the current and magnetic field
profiles within the plasma are influenced not only by the instantaneous state of external coils and heating systems,
but also notably by their historical states.

The observed non-Markovian behavior of the system implies that a controller relying solely on instantaneous
observations may fail to accurately infer the true state of the plasma, potentially leading to degraded control
performance or even the excitation of plasma instabilities. To effectively incorporate historical information for
the RL agent and ensure discharge integrity and stability on EAST, this study adopts a time-delayed embedded
observation approach. Specifically, we construct an augmented observation vector by concatenating the current
observation with those from the previous & time steps, which is then provided as input to the agent:

Observation = [O¢—k, Ot—g11, .-y Or—1, O], k = 20 4)

At each time step, the observation consists of the normalized values of all 11 controlled variables:

O = (5w1~6,8~97 BrXa BZXa Iperrror)scaled (®))
0P = by — Yx (6)
Iperrror = Ip - Iptarget (7

The scaling factors for the controlled variables are 0.01, 0.005 and 10000, respectively.This approach provides
the agent with essential temporal context, enabling it to implicitly learn the dynamic evolution of the system
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state—particularly the time-delay effects associated with the penetration of poloidal magnetic fields—thereby
facilitating more accurate and proactive control decisions.

However, providing historical observations alone is insufficient to guide the agent in mastering complex con-
trol tasks; the agent also requires a clear and precise objective to evaluate the quality of its actions. This objective
is communicated through the reward function, which maps the agent’s observations (along with their historical
context) and actions to a scalar reward signal. The design of this function critically influences the behavior of the
policy ultimately learned by the agent. Accordingly, the reward function designed in this work simultaneously
incentivizes the reduction of tracking errors across multiple controlled variables. In addition, constraints on the
action outputs are incorporated to account for practical power supply limitations, with penalties applied accord-
ingly. The specific design is as follows:

— Tracking Error Reward: This component normalizes the tracking errors of the plasma current (Ipeyror), the
magnetic field at the X-point (Brx, Bzx), and the flux differences at each controlled point (§t)). Different nor-
malization strategies are applied segment-wise based on quantitatively defined reference thresholds.

1, 0 <z < good
norm(z) =< a-e"* +¢, good < x < stop (8)
0, x > stop

The parameters a, b, ¢ are determined by solving the system of equations using the fsolve function from
Python’s scientific computing libraries [24]:

a- eb.good +e= Ygood
a- e e = yyaq ©)
a - eb.sz&op +c= Ystop

Good and bad represent the quality of the controlled variables, where (bad, ypqq) is used to adjust the gradient
variation of the normalization curve. These parameters directly influence the convergence and difficulty of the
training process. Although the parameter space contains multiple local optima, the parameter set employed in
this study—while not proven to be globally optimal—was experimentally validated to effectively balance system
sensitivity and stability.

The normalized parameter values are combined into a composite reward using a weighted Smooth M ax func-
tion. The core objective is to incentivize the agent to minimize the overall deviation of all control targets from
their desired reference values. The mathematical formulation is as follows:

o wmiet
Z?:l w;eoTi
Here, the parameter o determines the direction and magnitude of the weighting. When o« > 0, the function
output approaches the maximum value of its inputs; when o < 0, it tends toward the minimum. To ensure overall
stability in control applications, it is more appropriate to choose o < 0.
— Action Smoothness Penalty: To enhance the stability of the control system and accommodate the physical
response limits of the power supplies, a constraint on the rate of change of control actions is introduced. This term
penalizes abrupt changes between consecutive actions output by the agent, thereby promoting smoother and more
stable control policies while reducing stress on the actuators. The penalty is formulated as follows:

(10)

SmoothMax(x1. p, w1, n,0) =

12

penalty = — Z(aitfl —a;,)? (11)
i=1

Therefore, at each time step ¢, the total reward obtained by the agent is given by:

f(z1, ..., x;) = SmoothM ax(norm(zy), ..., norm(z;)) (12)
r=ax f(|0y;]) + 8 * f(|Brx|,|Bzx|) + v * f(IPerror|) + 0 * penalty,a+ 8+~ =1 (13)
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3.2. RL Training and Testing

We employs a parallelized training architecture to enhance learning efficiency. While PPO, as an on-policy al-
gorithm, offers exceptional training stability, its requirement for real-time data collection under the current pol-
icy can lead to limited sample efficiency. To address this, we implemented a parallelized sampling framework
by synchronously running multiple environment instances, significantly improving data throughput. Compared
to off-policy methods that rely on experience replay, parallel PPO maintains policy evaluation consistency and
avoids importance sampling bias, while effectively mitigating the sample efficiency limitations inherent in on-
policy approaches. This architecture preserves the inherent stability of the original algorithm and achieves an
order-of-magnitude improvement in data collection efficiency through parallelization. The approach trades off a
degree of sample efficiency for exceptionally high training stability and reliability.

Based on an equilibrium configuration with Ip of 250k A and « of 1.7, the training simulated 2 seconds of
flat-top phase shape control. Random deviations A3, were introduced as perturbations during training. The result
of the training is showed in Fig.[2}

le3
2.0 1 —— Rewards
oy
Brx&Bzx
Ip
1.5 4 penalty
ki
& 1.0 -
S
(U]
2 <
0.5 -
0.0 -

0.0 0.5 1.0 1.5 2.0 2.5
Policy Update le3

FIG. 2. Training progress. The maximum achievable reward is set to 2000, indicating that all controlled variables
fall within the desired performance range (0, good). We employ an asymmetric Actor-Critic architecture, in which
the Actor network comprises two hidden layers with 256 and 64 units, respectively, while the Critic consists of
three hidden layers, each with 128 units. All layers use the tanh activation function.

4. EXPERIMENTAL RESULTS AND APPLICATION ON EAST

The policy model trained on PyTorch was converted into the ONNX format and integrated into the Plasma Control
System (PCS) to enhance cross-platform deployment capability and operational efficiency [25]]. During actual
discharge experiments, the RL agent received real-time system observations, based on which it generated voltage
control commands for the PF coils and achieved real-time control through the PCS.

A phased control strategy was adopted: the plasma was first sustained using a PID controller until ¢ = 3s,
after which control was switched to the RL agent, showd in Fig. [3]

Results indicate that although the agent received large error signals initially, it responded rapidly and effec-
tively reduced the control error. After maintaining RL-based control for 2.06 seconds, the discharge was termi-
nated due to the activation of the protection mechanism, triggered when the current in the PF4 coil exceeded the
safety threshold of 12.5kA. To mitigate this issue, additional preprocessing steps were implemented on the input
data. Two specific measures were adopted: first, the scaling factor of the X-point magnetic flux was increased
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FIG. 3. Time Evolution of Controlled Variable Error During RL Control in Shot #152246. The horizontal axis
represents the time elapsed since the start of RL control.

from 0.005 to 0.01; second, the error signal at the X-point was processed through a high-pass filter with a cut-
off time constant 74 = 0.7s to enhance its responsiveness to rapidly varying high-frequency components. The
corresponding experimental results are presented in Fig. [4] Fig.[5]
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FIG. 4. Time Evolution of Controlled Variable Error During RL Control in Shot #152727 of Scheme I.

Following systematic data preprocessing, the discharge duration was significantly extended, and the RL con-
troller demonstrated robust performance. Taking discharge experiment #152727 as an example, RL-based control
was maintained until the current decay phase and was terminated only when the plasma current dropped to ap-
proximately 75 KA due to an overcurrent in the PF6 coil. It is worth noting that during training, the agent received
a fixed reference signal indicating Ip of 250 KA. The experimental results indicate that the controller exhibits a
notable degree of generalization capability. Its control mechanism relies on feedback-based error signals, empha-
sizing dynamic regulation of system deviations rather than direct tracking of absolute parameter values. When the
operating current changes, the plasma system transitions to a new equilibrium state with altered dynamic response
characteristics. Nevertheless, the proposed agent effectively adapts to such variations, achieving stable and robust
control of the system state. In discharge experiment # 152845, the agent successfully completed the full discharge
process.

Building on this result, we further increased the Ip setpoint to evaluate the agent’s ability to maintain plasma
equilibrium and shape control under higher current conditions, showd in Fig. [§ The results demonstrate that al-
though the agent was trained around an equilibrium at 250 KA, it maintained stable steady-state control even at
the elevated current of 350 KA.

For the three distinct input signal strategies described above, we systematically evaluated their control perfor-
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mance using the root mean square error (RMSE) as a quantitative metric. The statistical results are summarized
in Table [Tl

TABLE 1. COMPARISON OF CONTROLLED VARIABLE ERRORS

oplem]  Bx[T]  Ip[KA]
#152246 213 206 x 1073 0.91
#152727  0.96  1.34 x 1072 1.17
#152845 2,18  7.12x 1072 097
#153336  5.15  4.32x 1073 1.86

The analysis indicates that although the preprocessed input signals allowed a complete discharge, they led to
some reduction in control accuracy. Therefore, achieving full discharge while preserving the original error signals
remains a key objective for our future research.

5. CONCLUSION

The simplest RZIP model under a rigid assumption was utilized as the RL training environment. By applying the
PPO algorithm, we trained a control model that fulfills experimental requirements. Experimentally, we achieved
full discharge scenarios through control of plasma position and shape. Furthermore, successful enhancement of
the plasma current demonstrated a degree of system robustness. However, an overcurrent condition in the poloidal
field coils—unforeseen during training—posed a challenge. Although additional input processing was applied
to ensure comprehensive controllability at the cost of minor accuracy loss, this workaround remains provisional,
indicating significant room for improvement. Attaining precise configuration control with agents that reliably
meet real-world demands remains the ultimate objective. The underlying issue is attributed to out-of-distribution
(OOD) data, which the agent had not previously encountered. Nevertheless, these findings confirm that the linear
equilibrium evolution model exhibits sufficient fidelity to support transferable controller development, justifying
this approach for testing control strategies in future devices. The OOD challenge represents one of the prominent
sim-to-real gaps in RL. Incorporating historical experimental data into the reinforcement learning experience
replay buffer may alleviate this issue. The current training framework allows for minor adjustments to enable
Al-assisted control during discharge. Future work will focus on developing a basic control policy integrated with
real-time reinforcement learning optimization to enhance robustness and control capability.

Reinforcement learning offers a paradigm shift in multiple-input multiple-output (MIMO) control—by tran-
sitioning from iterative decoupling to requirement-driven design, it substantially reduces the workload for re-
searchers. A more stable and realistic plasma parameter evolution model is essential to support broader control
objectives, such as density control, enabling holistic plasma optimization and more stable discharges.In summary,
RL-based control remains a highly attractive alternative. This approach has the potential to become a standard
tool for routine discharge operation, with numerous promising pathways for further development.

ACKNOWLEDGEMENTS

This work is supported by the National MCF Energy R&D Program of China (Grant Nos. 2024YFE03020003
and 2022YFE03010002), the National Natural Science Foundation of China (Grant Nos.12575247, 12575246 and
11905256), the Institute of Energy, Hefei Comprehensive National Science Center under Grant No. 24KZS304,
and the funding support from International Atomic Energy Agency with Research Contract Number of 26478.

REFERENCES

[1] John Wesson. Tokamaks. Oxford University Press, 2011. ISBN: 978-0-19-959223-4.

[2] Q.P. Yuan et al. “Plasma current, position and shape feedback control on EAST”. In: Nuclear Fusion 53.4
(2013), p. 043009. pO1:/10.1088/0029-5515/53/4/043009.

[3] Gianmaria De Tommasi. “Plasma Magnetic Control in Tokamak Devices”. In: Journal of Fusion Energy
38.3—4 (2018), pp. 406—436. DO1:|10.1007/s10894-018-0162-5.

[4] Y. Guo et al. “Preliminary results of a new MIMO plasma shape controller for EAST”. In: Fusion Engi-
neering and Design 128 (2018), pp. 38—46. 1SSN: 0920-3796. DOI: https://doi.org/10.1016/7.
fusengdes.2018.01.025.


https://doi.org/10.1088/0029-5515/53/4/043009
https://doi.org/10.1007/s10894-018-0162-5
https://doi.org/https://doi.org/10.1016/j.fusengdes.2018.01.025
https://doi.org/https://doi.org/10.1016/j.fusengdes.2018.01.025

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

TAEA-CN-3254/INDICO ID

G. Ambrosino and R. Albanese. “Magnetic control of plasma current, position, and shape in Tokamaks: a
survey or modeling and control approaches”. In: IEEE Control Systems Magazine 25.5 (2005), pp. 76-92.
DOI:|10.1109/MCS.2005.1512797.

R. Ambrosino et al. “Model-based MIMO isoflux plasma shape control at the EAST tokamak: experimental
results”. In: 2020 IEEE Conference on Control Technology and Applications (CCTA). 2020, pp. 770-775.
DOI:]10.1109/CCTA41146.2020.9206391.

David Silver et al. “Mastering the game of Go with deep neural networks and tree search”. In: Nature
529.7587 (Jan. 2016), pp. 484-489. DO1:|10.1038/naturel 6961l

Xue Bin Peng et al. “Sim-to-Real Transfer of Robotic Control with Dynamics Randomization”. In: 2018
IEEE International Conference on Robotics and Automation (ICRA) (2017), pp. 1-8.

Yifan Zhang et al. “Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning”. In: IEEE Trans-
actions on Knowledge and Data Engineering 34.1 (2022), pp. 236-248. DO1:|10.1109/TKDE . 2020 .
2979700l

Xiang (Ben) Song, Bin Zhou, and Dongfang Ma. “Cooperative traffic signal control through a counterfac-
tual multi-agent deep actor critic approach”. In: Transportation Research Part C: Emerging Technologies
160 (2024), p. 104528. 1SSN: 0968-090X. DOIL: https://doi.org/10.1016/j.trc.2024.
104528.

Long Ouyang et al. “Training language models to follow instructions with human feedback”. In: Pro-
ceedings of the 36th International Conference on Neural Information Processing Systems. NIPS *22. New
Orleans, LA, USA: Curran Associates Inc., 2022. ISBN: 9781713871088.

Jonas Degrave et al. “Magnetic control of tokamak plasmas through deep reinforcement learning”. In:
Nature 602.7897 (2022), pp. 414—419. DOI1:110.1038/s41586-021-04301-9,

Jaemin Seo et al. “Avoiding fusion plasma tearing instability with deep reinforcement learning”. In: Nature
626.8000 (2024), pp. 746-751. DO1:|10.1038/s41586-024-07024-9.

Brendan D. Tracey et al. “Towards practical reinforcement learning for tokamak magnetic control”. In:
Fusion Engineering and Design 200 (2024), p. 114161. 1SSN: 0920-3796. DOI: https://doi.org/
10.1016/7.fusengdes.2024.114161.

Y C Zhang et al. “Real-time feedback control of p based on deep reinforcement learning on EAST”. In:
Plasma Physics and Controlled Fusion 66.5 (2024), p. 055014. DOI:|10.1088/1361-6587/ad3749.

S. Dubbioso et al. “A Deep Reinforcement Learning approach for Vertical Stabilization of tokamak plas-
mas”. In: Fusion Engineering and Design 194 (2023), p. 113725. 1SSN: 0920-3796. DOI: https://doi.
org/10.1016/7.fusengdes.2023.113725.

W Yuehang. “EAST shape and position control optimization and system identification”. PhD thesis. Ph. D.
dissertation, Dept. Plasma Phys., Univ. Sci. Technol. China, Hefei, China, 2018.

B.J. Xiao et al. “EAST plasma control system”. In: Fusion Engineering and Design 83.2 (2008), pp. 181-
187. 1SSN: 0920-3796. DOI: https://doi.org/10.1016/j.fusengdes.2007.12.028.

John Schulman et al. “Proximal Policy Optimization Algorithms”. In: ArXiv abs/1707.06347 (2017).

John Schulman et al. “High-Dimensional Continuous Control Using Generalized Advantage Estimation”.
In: (June 2015). DO1:|10.48550/arXiv.1506.02438.

Y. Huang, B. J. Xiao, Z. P. Luo, et al. “Implementation of GPU parallel equilibrium reconstruction for
plasma control in EAST”. In: Fusion Engineering and Design 112 (2016), pp. 1019-1024.

B. Xiao, Q. Yuan, Z. Luo, et al. “Enhancement of EAST plasma control capabilities”. In: Fusion Engineer-
ing and Design 112 (2016), pp. 660-666.

B. J. Xiao, Q. P. Yuan, D. A. Humphreys, et al. “Recent plasma control progress on EAST”. In: Fusion
Engineering and Design 87.12 (2012), pp. 1887-1890.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, et al. “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python”. In: Nature Methods 17 (2020), pp. 261-272. DOI1: 10.1038/s41592-019—-
0686—-2.

Tian Jin et al. Compiling ONNX Neural Network Models Using MLIR. 2020. arXiv:2008.08272 [cs.PL]


https://doi.org/10.1109/MCS.2005.1512797
https://doi.org/10.1109/CCTA41146.2020.9206391
https://doi.org/10.1038/nature16961
https://doi.org/10.1109/TKDE.2020.2979700
https://doi.org/10.1109/TKDE.2020.2979700
https://doi.org/https://doi.org/10.1016/j.trc.2024.104528
https://doi.org/https://doi.org/10.1016/j.trc.2024.104528
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1038/s41586-024-07024-9
https://doi.org/https://doi.org/10.1016/j.fusengdes.2024.114161
https://doi.org/https://doi.org/10.1016/j.fusengdes.2024.114161
https://doi.org/10.1088/1361-6587/ad3749
https://doi.org/https://doi.org/10.1016/j.fusengdes.2023.113725
https://doi.org/https://doi.org/10.1016/j.fusengdes.2023.113725
https://doi.org/https://doi.org/10.1016/j.fusengdes.2007.12.028
https://doi.org/10.48550/arXiv.1506.02438
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://arxiv.org/abs/2008.08272

	Introduction
	Background
	Reinforcement Learning
	Proximal Policy Optimization

	Shape Control On EAST

	Training and Performance Validation in Simulation
	Basic elements of RL
	RL Training and Testing

	Experimental Results and Application on EAST
	Conclusion

