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Abstract

Equilibrium evolution and real-time reconstruction are critical challenges in magnetic confinement fusion,
particularly for the fast-changing plasmas in SUNIST-2. We present a physics-informed Deep Operator Neural Network
(DeepONet) framework that integrates Grad—Shafranov constraints with diagnostic measurements. Trained on only ~100
discharges, our model achieves label-free, real-time reconstruction while demonstrating strong generalization across
discharges. Key innovations include predicting plasma-only contributions to the poloidal flux y, employing a source network
to replace the conventional least-squares procedure, and using a stepwise training strategy for stable convergence. This
framework is extendable to plasma evolution modeling, offering a promising path toward data-driven plasma control.

1. INTRODUCTION

Accurate and fast equilibrium reconstruction is essential for real-time control of tokamak plasmas. SUNIST-2
plasmas evolve rapidly and violently, which challenges traditional iterative solvers like real-time EFIT (rt-EFIT),
due to the intrinsic trade-off between computational speed and spatial/temporal accuracy.

Data-driven surrogate models, particularly neural networks, provide a promising alternative. By learning from
diagnostic measurements and embedding physics constraints, these models can achieve both high accuracy and
real-time performance, enabling robust control of fast-evolving plasmas.

2. METHODDS.

2.1 Dataset Construction

The dataset includes measurements from magnetic probes, flux loops, Rogowski coils, and PF coil currents. A
crucial preprocessing step is separating the plasma-only contribution to the poloidal flux y. Removing the coil

contribution produces a smoother y landscape, facilitating neural network training and improving predictive
accuracy.
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.2 Network Architecture
Our framework builds upon GS-DeepNet, adopting the DeepONet paradigm:

. Branch network: Encodes diagnostic measurements.
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. Trunk network: Encodes spatial coordinates (R, Z).
. Fusion layer: Implements an Einstein summation to predict .
. Shared encoder: Enhances generalization across discharges.
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A polynomial basis is used for p’ and ff” (consistent with EFIT). The source network predicts coefficients of p’,
ff’, and eddy currents of the vacuum vessel. Replacing the conventional least-squares solver with the source

network improves robustness against parameter sensitivity.
2.3 Loss Function

The loss function combines multiple components:

. Data loss (match to diagnostic measurements)

. Physical loss (Grad—Shafranov constraints)

. Least-squares loss (computed from source network outputs)
. Constraint loss (boundary and regularization terms)

2.4 Stepwise Training Strategy

To ensure stable convergence:

1. Train y-related modules to capture the equilibrium representation.

2. Train source-related modules while freezing y-related modules.

3. Jointly fine-tune all modules for end-to-end learning.

losses
- magnetic probe,
flux loop
physical loss GS equation
least square loss [|Ax-b]|
constrain loss non-negative pressure
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This phased approach reduces training difficulty and accelerates convergence.

3. RESULTS

3.1 Equilibrium Reconstruction
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The framework successfully reconstructs plasma equilibria in SUNIST-2. Predicted diagnostic signals show

excellent agreement with measurements (R? = 0.9970 for flux loops, R?

demonstrating high accuracy and robustness.

3.2 Inference Performance

0.9960 for magnetic probes),

A single reconstruction on a 65%65 grid takes ~0.1 ms on an NVIDIA RTX 3070 Ti, meeting real-time control
requirements at kHz rates.

3.3 Uncertainty Quantification

Monte Carlo Dropout provides prediction uncertainty estimates, yielding reliable error bounds useful for control

applications.
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DISCUSSION AND CONCLUSION
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We developed a physics-informed, dual-network surrogate model for real-time equilibrium reconstruction. Key

improvements include:
Source network replacing least-squares fitting, enhancing robustness.



TEC-CTL/3153

. Plasma-only y separation, reducing learning complexity.
. Stepwise training strategy, improving stability and convergence.

Outlook: Future work will incorporate temporal modeling (e.g., RNNs or transformers) for smoother eddy
current prediction and reconstruction continuity, aiming toward a unified framework for equilibrium evolution
and reconstruction.
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