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Abstract

Accurately predicting plasma behavior based on discharge configurations is essential for the safe and
efficient operation of tokamak experiments. While physics-based integrated modeling codes provide valuable
insights, their high computational cost limits their applicability for fast scenario design and control optimization.
In this study, we propose a transformer-based machine learning model to predict key global plasma parameters
on the WEST tokamak, including the normalized beta (3,,), toroidal beta (3,), poloidal beta (3,), plasma stored
energy (Wina), safety factor at the magnetic axis (qg), and safety factor at the 95% flux surface (qg5). The
model uses only signals that can be specified or regulated before the discharge, such as magnetic coil currents,
auxiliary heating power, plasma current reference, and line-averaged plasma density. Trained on 550 discharges
from the WEST campaigns, the model demonstrates an average mean square error (MSE) loss of 0.026, an average
coefficient of determination R? of 0.94, and achieves inference times on the order of 0.1 seconds. These results
highlight the potential of data-driven surrogate models for assisting in discharge planning, scenario evaluation,
and real-time control of tokamak plasmas.

1. INTRODUCTION

Any plasma discharge needs to be prepared in advance using a discharge schedule editor, in which all tokamak
settings are defined. In order to optimize the tokamak operation, these settings must be assessed using a tokamak
simulator in order to check the feasibility of the preset discharge scenario.

Predicting plasma behavior from the inputs taken from the discharge schedule editor in tokamaks has tradi-
tionally relied on first-principles physics codes, commonly referred to as “Integrated Modeling”. These include
ETS [1], PTRANSP [2], TSC [3], NICE [4], CRONOS [5], JINTRAC [6], METIS [7], ASTRA [8], RAPTOR
[9]], and TOPICS [10]], etc. While these codes simulate key physical processes with high fidelity, their substantial
computational cost makes them unsuitable for fast or real-time prediction tasks.

This is especially true when we need to quickly predict zero-dimensional parameters, such as plasma stored
energy W,,nq, normalized beta f3,,, safety factor q at magnetic axis gg, from a given set of coil current and
the presetting parameters. The data-driven methods offer a way to bridge this gap by learning the input-output
mapping from the experimental data and bypassing the need to solve first-principle equations every time. Because
of this advantage, researchers in the fusion community have used data-driven methods to study several problems
such as disruption prediction [[11} |12]], magnetic field control [13], surrogate model for Ion Temperature Gradient
(ITG) mode [[14], plasma magnetic measurement estimation [/15]], and so on.

Furthermore, some data-driven approaches have explored full discharge prediction [[16,|17,|18]]. These models
do not rely solely on configurations but also incorporate signals such as gas puffing system data, which are hard
to determine prior to a discharge and are influenced by the evolving plasma state during the discharge. This
dependence constrains their generalizability and practical applicability.

In this study, we developed a transformer-based machine learning model that utilizes only signals that can be
directly controlled or feedback-regulated. Compared to previous works [16} |17]], our model does not rely on the
state of any specific discharge process, thereby enhancing its practical applicability. Specifically, we successfully
reproduced six key zero-dimensional global parameters on the Tungsten (W) Environment in Steady-State Toka-
mak (WEST) by inputting 19 signals, including poloidal field coil currents, auxiliary heating, plasma reference
current, and plasma electron density measurements at the magnetic axis.

The remainder of this paper is organized as follows. Section [2| describes the dataset preparation and the
analysis of the input and output signals. Section [3|outlines the machine learning methodology. Section [ presents
the model results along with the corresponding analysis. Finally, Section [5] presents a brief conclusion and the
future direction.

2. DATASET

The WEST tokamak is equipped with a comprehensive suite of diagnostic systems, including magnetic diagnostics
[19] and plasma state diagnostics [20} 21}, [22]], among others. In the present study, as shown in Table |1} the input
signals include the power and corresponding phase of the Lower Hybrid Wave (LHW) Current Drive and Heating
System, the power of the Ion Cyclotron Resonance Heating (ICRH) System, the reference plasma current, the
currents in the Poloidal Field (PF) coils, and the real-time measured plasma line-average density. The output
signals include normalized beta (3, toroidal beta /3;, poloidal beta 3,,, plasma stored energy W54, safety factor
g at magnetic axis qo and safety factor ¢ at 95% flux surface. A total of 550 discharges, ranging from discharge
#57381 to #60286, were initially selected from the WEST database. Discharges with durations less than 2 seconds
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TABLE 1. THE LIST OF SIGNALS. A signal name ending with _real indicates the real diagnostic data during the
tokamak discharge process. The signal name ending with _ref indicates that the data is reference data, i.e. nominal
signals in the Discharge Control System (DCS) of WEST.

Signals Physics meanings # of sampling
channels rate

Output signals 6

Bn Normalized beta 1 1-12Hz
Bt Toroidal beta 1 1-12Hz
Bp Poloidal beta 1 1-12Hz
Winhd Plasma stored energy 1 1-12Hz
q95 Safety factor q at 95% flux surface 1 1-12Hz
Qo Safety factor q at magnetic axis 1 1-12Hz
Input signals 19

LHW_real = Power of Lower Hybrid Wave (LHW) Current Drive and 4 1 kHz

Heating System
ICRH.real Power of Ion Cyclotron Resonance Heating (ICRH) 3 1 kHz
System
I, ref Reference of plasma current 1 1 kHz
ne-real Actual line-average electron density at magnetic axis 1 1 kHz
PF_real Current of Poloidal Field (PF) coils 10 1 kHz
Step size Input sequence s:::::::e
[1]2]3]a s[e[7]8]o]ao]ar]a2] . - El - ’ .
——— 5 N —;
Window size Average overlap sequence

FIG. 1. The workflow of machine learning model in the present work

were excluded, as the ramp-up phase in the WEST tokamak typically takes about 2 seconds. Such short discharges
are usually indicative of abnormal events and were not included in the analysis. All selected signals were uniformly
resampled at 1 kHz from the start of each discharge and aligned to a common time base. The data were saved in
HDFS5 format on a discharge-by-discharge basis, resulting in approximately 15 gigabytes of original data.

3. METHODS

The machine learning model and its data processing workflow are shown in Fig. [I] Prior to model input, the
raw data are smoothed using a simple moving average filter to suppress noise. To handle discharge sequences
of different lengths, the data are segmented using a fixed-size sliding window of length 1024 and a step size of
512, resulting in a data augmentation ratio of 2. Because the output sequences overlap (as shown by the dark blue
regions in Fig. [T)), the overlapping segments are averaged to improve numerical stability and prediction accuracy.
The 550 discharges were randomly divided into training (60%), validation (20%), and test (20%) sets.

Our machine learning model was developed using PyTorch on Red Hat Enterprise Linux 8, running on four
A100 GPUs. During model training, we utilized the Bayesian algorithm [23]] to perform the architectural hyperpa-
rameter search. Additionally, we experimented with various optimizers and regularization techniques, ultimately
identifying the optimal set of hyperparameters, as shown in table [2| Inference time was further tested on both a
consumer-grade RTX 3090 GPU and an A100 GPU, with both achieving similar inference times of ~ 0.1 seconds.

4. RESULTS

Fig. 2] shows the model prediction for three typical WEST discharges #57948, #58387, #59490. The duration of
these discharges ranges from approximately 10 to 70 seconds, and they involve 2 types of auxiliary heating. Under
these conditions, our model can successfully reproduce the entire discharge pulse from the ramp-up, through the
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TABLE 2. OUR MODEL HYPERPARAMETERS

Hyperparameter Explanation Best value
Nt Learning rate 1x1073
num_heads Number of heads 8
num_layers Number of layers 2
Optimizer Optimizer type Stochastic Gradient Descent (SGD)
Ndropout Dropout rate 0.1
B Batch size 16
W Window size 1024
S Step size 512
Filter Filter type Simple moving average
Wiitter Window size of the filter 11

flat-top, to the ramp-down phases. However, there is a slight discrepancy in the predictions of gy and gg95. We
also observe the same phenomenon in statistical plots as shown in Fig. [3] These quantities exhibit lower accuracy
because our input signals do not properly contain the pressure profiles and kinetic measurements. Our goal is to
reproduce the tokamak response using signals that can be specified before discharge, these measurements should
not be included in the input signals. If gg and qg5 are not properly constrained, they may be unreliable due to large
variances, as the model struggles to reconstruct these parameters.

As shown in Fig. 3] we quantitatively evaluate the model performance on the entire test set, which consists
of 110 discharges. For each discharge, the target and predicted values are averaged over its duration. Overall, the
model demonstrates strong performance across most output parameters, except for gy and gg5, where prediction
accuracy is relatively lower. A small number of discharges show poor predictive performance. Detailed analysis
reveals that these cases are mainly associated with fluctuations in magnetic field coil currents, events that are
uncommon and not part of standard tokamak operational planning. Such cases deviate from our objective of
reproducing plasma responses in conventional discharges and providing reliable references for tokamak scenario
design, as these fluctuations are typically unintended and fall outside the scope of standard design procedures.

In addition, some discharges correspond to rare operational scenarios, such as discharge #60147, which in-
volves the use of two valid auxiliary heating methods and they are very rare in our dataset. This discharge occurs
only three times out of 550 discharges. All of these cases are in the test set. The model’s generalization ability
for such unusual and rare discharges remains limited. Handling rare cases is an inherent challenge for machine
learning methods. To improve performance in future work, we plan to include more discharges from this scenario
to enhance the model’s exposure and learning. We will also explore some data augmentation for the rare and
fluctuating discharges, or use some physics-informed method to enhance the ML model’s generalization ability.

5. CONCLUSION AND DISCUSSION

In this study, we proposed a transformer-based machine learning model for forecasting the behavior of tokamak
plasmas based on discharge configurations. The model takes as input the auxiliary heating power, magnetic
field coil currents, plasma current, and line-averaged plasma density. These signals are typically designed or
programmed prior to the actual discharge, enabling the model to predict the plasma’s response to the intended
operational settings.

The current model focuses on predicting six key global plasma parameters: normalized beta (3, ), toroidal beta
(B+), poloidal beta (f3,,), plasma stored energy (Wmna), safety factor at the magnetic axis (go), and safety factor
at the 95% flux surface (g95). These quantities serve as essential indicators of plasma performance, stability, and
confinement quality. The model demonstrates promising predictive performance and offers potential applications
in discharge planning and fast scenario evaluation for tokamak experiments.

The present work can be extended to predict additional plasma parameters, such as the loop voltage (Vio0p) and
internal inductance (I;) or 1D profiles such as density and temperature, which are also important for characterizing
plasma behavior and optimizing control strategies. However, a significant challenge lies in obtaining sufficient
and diverse data to properly constrain the model and ensure its generalization to a broader range of operational
scenarios.

Moreover, purely data-driven models exhibit strong sensitivity to the specific conditions of the device. Conse-
quently, directly applying the model after major hardware modifications or transferring it to a different tokamak
remains an unresolved challenge. To address these limitations, future research can explore hybrid approaches that
integrate physical knowledge or constraints into the model architecture or training process. Incorporating physics-
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le-2 le6 le6
5 No auxiliary heating 2 T=TFW heating \ 15 R
z 210
0 =1 T
4
T \_ ] 0.5
-5 0 0.0
1.0 0.75
—— Target of B, —— Target of B, —— Target of B,
05 ---- Prediction of B, ---- Prediction of B, 0.50 i ---- Prediction of B,
) loss: 0.008, R?: 0.984 X 0.5 loss: 0.003, R?: 0.990 . 0.25 loss: 0.007, R?: 0.984
0.0 0.0 0.00
15
1.0 e —— Target of B, —— Target of B, 1.0 —— Target of B,
---- Prediction of B, 1.0 ---- Prediction of B, __ -~~~ Prediction of B,
05 loss: 0.008, R2: 0.975 os :0.004, R% 0.987 05 M‘: 0970
0.0 0.0 0.0 { 7
le—3 le-3 le-3
3
P —— Target of B, 2 —— Target of B¢ =" —— Target of B,
---- Prediction of B¢ -~~~ Prediction of B¢ 2 ) ---- Prediction of B¢
. 2, . 2, B . 2,
1 loss: 0.004, R%: 0.988 \ 1 loss: 0.001, R%: 0.990 \ ; loss: 0.008, R%: 0.988 \\
0 0 0
3 le5 le5 le5
—— Target of Wyhg 5 —— Target of Wppg _3 —— Target of Wipng
=2 -~~~ Prediction of Wmng = -~~~ Prediction of Wpnng = 5 P -~~~ Prediction of Wmng
° ° =
£, loss: 0.009, R2; 0.991 \\ £ loss: 0.004, R2: 0.987 3 £ loss: 0.023, R2: 0.988 \
= Nl R 21 <
0 0 0
125
—— Target of qos —— Target of gos 8 —— Target of gos
10.0 -~ Prediction of Ggs | 10.0 —--- Prediction of gos -~ Prediction of gos
751 . loss: 0.011, R2: 0.975 . loss: 0.008, R2: 0.933 6 :0.019, R%: 0.975 2
5.0 5.0 \f“ 4 S
8
10 —— Target of go 10.0 —— Target of go —— Target of qo
---- Prediction of go 75 ---- Prediction of go 6 ---- Prediction of qo
5 loss: 0.021, R?: 0.952 50 loss: 0.012, R?: 0.959 4 loss: 0.054, R?: 0.834
] s ™, 2
0 5 10 15 20 0 10 20 30 40 50 60 70 0 2 4 6 8
Time [s] Time [s] Time [s]

FIG. 2. Three types of typical discharge prediction in the test set. (a) The Ohmic heating-only discharge. (b)
The discharge with LHW heating. (c) The discharge with ICRH heating. The targets represent experimental
measurements, while the predictions correspond to the model estimations.
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FIG. 3. Regression plots of the output signals. Both the target and predicted values are averaged over the duration
of each discharge. Except for qo and qgs, the model achieves a coefficient of determination R? greater than 0.90.
The performance for qo and qgs is slightly lower compared to the other signals.
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informed methods has the potential to enhance the model’s robustness and generalization capabilities, particularly
for extrapolating to unfamiliar operational regimes.

Additionally, collecting datasets from multiple devices and adopting dimensionless representations for both
input and output signals can further improve the cross-device applicability and generalization capability of the
model. These approaches align with the broader goal of developing reliable, data-driven surrogate models that can
support discharge design, scenario optimization, and real-time plasma control across present and future tokamak
devices.
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