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Abstract

Disruptions are catastrophic events in tokamak plasmas that can severely damage devices and compromise reliable
operation, making accurate prediction and avoidance crucial for future fusion reactors. Machine learning has demonstrated
strong potential in disruption prediction with high accuracy and computational efficiency, but its application is often limited
by poor interpretability. These issues restrict the ability to reveal physical mechanisms and reduce the transferability of models
across devices. To address this challenge, the paper focuses specifically on density-limit disruptions and develops an
interpretable hierarchical classification model as a methodological attempt and validation framework. Greenwald density limit
scaling provides the maximum density that plasma can reach under common conditions. However, greenwald fraction is also
not the real physics of density limit disruption and cannot be used as a predictor of density limit disruption because plasma
often disruption before the density limit is reached. The model is designed to predict density-limit disruptions, other disruptions,
and non-disruptive discharges by excluding empirical scaling parameters and instead incorporating physics-guided features
such as MARFE-related radiation asymmetries, density fluctuations, MHD activity, and plasma control system parameters.
The framework employs LightGBM with a hierarchical loss function and Bayesian hyperparameter optimization to ensure
both robustness and interpretability. Evaluation on 1,099 discharges from J-TEXT shows that the model achieves an overall
accuracy of 96.0% for the discharges in test set. Interpretability analysis with SHAP indicates that density asymmetry and
density fluctuations near 0.6a—0.7a are decisive factors in density-limit disruptions, while CIII radiation asymmetry shows a
stabilizing effect. These findings confirm that the proposed method provides a feasible and interpretable approach for density-
limit disruption prediction, demonstrating that physics-guided machine learning can move beyond empirical scaling to capture
meaningful mechanisms and inspire more reliable disruption avoidance strategies in future tokamaks.

1. INTRODUCTION

Disruption is a catastrophic event in tokamak plasmas that requires prediction, mitigation and avoidance ['?1. Data-
driven disruption prediction has been increasingly investigated and promoted due to its outstanding performance
[3-161 However, most data-driven models are based on machine learning, which leads to a lack of interpretability.
Investigating the interpretability of disruption prediction models not only validates the reliability of the models
but also helps researchers understand the disruption rules that the models have learned. This helps researchers
gain a deeper understanding of disruption physics, develop more suitable cross-machine models, and implement
disruption avoidance strategies targeting the disruption causes.

Various interpretable or explainable disruption prediction approaches have been developed in JET 781, DIII-D [17],
HL-2A 81 EAST 'l and J-TEXT B! based on the Post-hoc interpretability methods ?%. While these approaches
help validate models, their primary focus has been on verifying reliability rather than decoding the physical
mechanisms underlying the predictions. Consequently, the potential of interpretability as a tool for uncovering
disruption physics remains underexplored.

Understanding the causes of disruptions is not only of academic value but also of practical importance. Decoding
the patterns embedded in large datasets can provide deeper insight into disruption physics, support the design of
transferable cross-machine models, and enable intervention strategies targeting early precursors. However, the
study of disruptions is inherently complex, making it extremely challenging to conduct interpretability research
across all disruption types simultaneously. Since different types of disruptions involve distinct and possibly
coupled physical mechanisms, interpretability studies focused on specific disruption categories offer a more
promising route to bridge data-driven models with physical understanding.

High-density operation is particularly urgent for future tokamaks, as sustaining burning plasmas requires
achieving high plasma density. However, the density limit imposes a fundamental constraint that substantially
increases disruption risk. To address this, we first built a conventional model to predict all types of disruptions.
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This model successfully identified the scaling relationship between plasma current and core density, analogous to
the Greenwald scaling law. Nevertheless, in density-limit extension experiments with Resonant Magnetic
Perturbations (RMPs), the model became overly sensitive to the line-averaged density because of its reliance on
this scaling law, while neglecting important variations at the plasma boundary. This highlights the need for
interpretable models capable of capturing the actual physical mechanisms driving high-density disruptions, rather
than merely reproducing empirical scaling laws.

In this paper, we propose a new interpretable high-density disruption prediction model based on hierarchical
classification and high-density related features. Section 2 introduces the interpretability study of high-density
disruptions using the conventional model. Section 3 presents the overall model framework, including feature
extraction with both non-Greenwald and physics-guided high-density features. Section 4 describes the dataset,
including the data selection criteria and preprocessing procedures. Section 5 outlines the training strategy, the tri-
classification approach, and evaluates the predictive performance of the proposed model. Section 6 provides
interpretability analyses, validating the role of edge parameters and other physics-informed features. Finally,
Section 7 summarizes the main findings and discusses their implications for disruption prediction and avoidance
in future devices.

2. GREENWALD FRACTION BIAS IN DISRUPTION MODELING

An interpretable disruption predictor based on physics-guided feature extraction (IDP-PGFE) was recently
developed and successfully applied on the J-TEXT tokamak [*). This model represents a significant advancement
in disruption prediction research because it combines the accuracy of modern machine learning with the
interpretability provided by physics-guided features. By incorporating diagnostic signals related to
magnetohydrodynamic (MHD) instabilities, radiation, density evolution, and basic plasma control system
parameters, IDP-PGFE not only achieves a high degree of predictive accuracy but also offers insight into the
underlying mechanisms that govern disruption onset. On J-TEXT experimental datasets, the model exhibits high
predictive performance, with a true positive rate (TPR) of 97.27% and a false positive rate (FPR) as low as 5.45%.
These results demonstrate that the predictor has learned sufficiently meaningful physical patterns to distinguish
between disruptive and non-disruptive discharges, outperforming conventional data-driven approaches that rely
solely on raw diagnostic signals.

A crucial aspect of IDP-PGFE lies in its interpretability. The model employs SHapley Additive exPlanations
(SHAP)?' to evaluate the contribution of individual physics-guided features to the prediction outcome. Detailed
examination of the central line-averaged density and plasma current features revealed that the model may have
effectively captured the essence of the Greenwald density limit scaling law 22, Specifically, the SHAP analysis
showed that when the plasma density approaches or exceeds a critical threshold relative to plasma current, the
model assigns a higher disruptive contribution, mimicking the well-known empirical scaling that describes density
limits in tokamaks. For example, when density values were above approximately 4 x 10! m™, the contribution to
disruption increased significantly, particularly when the plasma current was below 180 kA. Conversely, for
plasma currents above 200 kA, the model recognized that higher density could still be tolerated without immediate
disruption risk, in agreement with the higher Greenwald limit at stronger plasma currents. This finding suggests
that the machine learning model, despite being trained only on experimental data, has internalized a key empirical
scaling relation widely used in plasma physics.

However, while this alignment with the Greenwald law reflects the model’s capacity to embed physical intuition,
it also introduces potential biases that limit its interpretability and reliability in certain scenarios. The Greenwald
fraction bias strongly affects the predicted results because the model tends to overemphasize density contributions
in disruption assessment. A notable example is discharge #1080500, which was falsely alarmed by IDP-PGFE. In
this case, the model predicted disruption primarily due to the high central density contribution. Yet, in the actual
experiment, disruption was successfully avoided because the application of 3/1 and 4/1 resonant magnetic
perturbations (RMPs) effectively modified the plasma radiation profile and stabilized the system against density-
limit-driven termination. Interpretability analysis reveals that the model can identify variations in the contribution
of the radiation profile to density-limit disruptions, but this effect is far outweighed by the dominance of the
scaling relation. As a result, the predictor tends to rely on empirical density—disruption correlations rather than
capturing the underlying physical stabilization mechanisms, such as impurity transport modification and
turbulence suppression induced by RMPs. Thus, the contribution of the core density feature, though useful as a
statistical indicator, cannot fully reflect the real physics of high-density disruption.
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To address these challenges and further enhance interpretability, we propose the development of a new disruption
prediction framework that explicitly removes empirical constraints such as the implicit dependence on Greenwald
fraction scaling. Instead, the improved model should integrate features directly linked to high-density disruption
physics. This approach would reduce over-reliance on density as a surrogate and provide a more mechanistic
understanding of high-density disruptions. Such integration would significantly improve the predictor’s ability to
generalize across experimental scenarios and across machines.

3. THE INTERPRETABLLE HIGH-DENSITY DISRUPTION PREDICTION MODEL

We trained a hierarchical multi-label classification model based on LightGBM (LGB) to differentiate density limit
disruptions, other disruption types, and non-disruptive discharges. The primary objective of this model is to
identify which features can most effectively distinguish high-density disruption from all the disruption through the
interpretable disruption prediction model. To mitigate potential bias induced by the Greenwald fraction, we
deliberately exclude core density and plasma current as a model input feature. Instead, we preferred the physics
features, such as edge transport, radiation profile (such as multifaceted asymmetric radiation from the edge,
MARFE), high-density front, and MHD instabilities. The hierarchical multi-label classification model is designed
to first distinguish between disruption and non-disruption events, and then further categorize disruptions into high-
density disruptions and other types. To enforce hierarchical consistency, we designed a hierarchical cross-entropy
loss that penalizes violations of the class structure. This framework produced a parent-class disruption prediction
model and a subclass high-density disruption model.

3.1. Non-Greenwald scaling law factors

In this section, the non-Greenwald scaling law factors will be introduced. To prevent the model from simply
learning empirical scaling relations, the most effective approach is to restrict such empirical scaling parameters at
the input stage. Table 1 show the overview of features used in this model, the MARFE-related features are
represented by ratios of diagnostic measurements obtained at different radial positions, which serve as proxies for
characterizing radiation asymmetry. The numerical subscripts denote normalized minor radii (e.g., 95 corresponds
to r/a = 0.95), thereby capturing radial variations in radiation behaviour. The Density Fluctuations features are
introduced to reflect high-frequency perturbations that are indicative of turbulence, even though turbulence
characterization itself is inherently complex. Here, the normalized gradient of line-integrated density (Den_ngrad)
is evaluated specifically at r/a = 0.6 and r/a = 0.7. In addition, all fluctuation-related frequency components are
filtered to exclude contributions below 20 kHz, ensuring that only high-frequency dynamics are represented. For
the MHD category, Mirnov probe signals are processed to extract both frequency and amplitude information,
along with the average poloidal mode number. These features are designed to capture magnetohydrodynamic
activity, which is directly linked to the onset and evolution of instability precursors. Finally, the PCS-related
features include toroidal field as well as plasma horizontal and vertical displacements, which are directly obtained
from the plasma control system. These parameters provide essential information about the equilibrium and control
of the plasma.

3.2. Improvement of Decision Tree Model Based on Hierarchical Classification

In this work, the objective is to distinguish density-limit disruptions from other types of disruptions, which
naturally leads to a three-class classification problem. The three categories are density-limit disruptions (DLD),
non—density-limit disruptions (NDLD), and non-disruptive discharges (ND). However, since general disruptions
and density-limit disruptions are not parallel categories, a hierarchical classification approach is adopted in the
machine learning framework. To provide stronger interpretability in subsequent analyses, this study does not
employ deep learning models but instead adopts the decision tree—based LGB model. The main structure of the
hierarchical classification model is shown in FIG. 1. FIG. 1 illustrates the overall structure of the hierarchical
classification framework. The label system is organized hierarchically, where non-disruptive discharges (ND) are
separated from disruptive ones in the first layer, and the second layer further distinguishes between non—density-
limit disruptions (NDLD) and density-limit disruptions (DLD). The first layer (LGB Model 1) is trained with a
hierarchical loss function to reduce error propagation, while its hyperparameters are optimized using Optuna with
the Fl-score as the evaluation target. The second layer (LGB Model 2) applies feature enhancement by
incorporating the first-layer prediction as an additional input feature, which is then used alongside the original
features to train the classifier. A binary log-loss is adopted as the objective function, and hyperparameter
optimization is also performed with Optuna. The final prediction probabilities are derived by combining outputs
from both layers, enabling consistent hierarchical decision-making. Model evaluation adopts hierarchical
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accuracy and hierarchical F1-score to ensure that performance metrics respect the hierarchical label dependency
and provide a comprehensive measure of classification reliability.

TABLE 1. Overview of Features Used in This Model

Physics Relation Feature Names Physical Meanings
CIIIAsym (95/82/70) Asymmetry of CIII Radiation
MARFE HaAsym (95/82/70) Asymmetry of Ho Radiation
DensAsym (95/82/70) Asymmetry of Line-Integrated Density
Den_ngrad Line-Integrated Density Normalized Gradient
DenFlu_int (70,60) Standard Deviation of Density Fluctuations
Density Fluctuations
DensFlu_fre (70,60) Density Fluctuations Frequency
DensFlu_amp (70,60) Density Fluctuations amplitude
MHD _fre Mirnov probe frequency
MHD MHD_amp Mirnov probe amplitude
MNM Average Poloidal Mode Number
bt Toroidal Field
PCS dx Plasma Horizontal Displacement
dy Plasma Vertical Displacement
Training & Evaluation Samples Classification
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FIG. 1. Architecture of the proposed Hierarchical Decision Tree Model

For each sample, we define a label pair (y (D, y @), where (0, 0) denotes a non-disruptive discharge, (1, 0) denotes
a non—density-limit disruption, and (1, 1) denotes a density-limit disruption. The training objective of the first-
layer model (LGB Model 1) is to predict whether a disruption will occur, corresponding to label, with the
optimization target being the improved hierarchy-aware loss function (Hierarchical Loss):

N
L = —%Z( 3" 1og(3) + (1= ") log(1-$)) + @ - Penalty - (1)
i=1

The Penalty term is introduced to enhance the correctness of the higher-level classification and to prevent errors
from propagating to the lower level, and is defined as:

iF 0 = U
Penalty = 1.5xL,, ify, —.0 and y;’ > 0.5 Q)
L, otherwise
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where is a hyperparameter that controls the penalty strength. The second-layer model (LGB Model 2) constructs
feature enhancement based on the output of the first layer, introducing the first-layer prediction as a new input
feature. Together with the original features, this augmented input is used to train the second-layer classifier, which
predicts the specific disruption type. During evaluation, hierarchical accuracy and hierarchical Fl-score are
adopted to comprehensively assess model performance, ensuring that hierarchical dependencies are respected
while maximizing both classification capability and interpretability. Hierarchical accuracy requires that
predictions at all levels be simultaneously correct for a sample to be considered correctly classified, which is
formally expressed as:

N
Hierarchical Accuracy = %Zl(ﬁf” =y" and ¥ = y?)> 3)
i=1

where N denotes the total number of samples, 1(-) is the indicator function that equals 1 when the prediction is
entirely correct and 0 otherwise, 7, 5'* represent the predicted labels from the first and second layers,

respectively. The Hierarchical F1-Score extends the traditional F1-score, which is designed for single-level
classification, to the hierarchical case. In hierarchical classification, the entire label path must be predicted
correctly; therefore, the hierarchical F1-Score is defined with respect to the complete set of hierarchical label
combinations. The final formula for the hierarchical F1-Score is expressed as:

Hierarchical Precision x Hierarchical Recall 4)

Hierarchical F1-Score =2 x— - — - -
Hierarchical Precision + Hierarchical Recall

4. TRAINING AND PERFORMANCE
4.1. Database

In this paper, the database search covered a total of 38,000 discharge experiments conducted on the J-TEXT device
between January 16, 2017, and December 30, 2022. The selection criteria are that the diagnostics of all the
discharges should be available for extracting feature in table 1 and the discharge should at least maintain 0.2
second. From these, 1,099 discharges that met the selection criteria were chosen. As shown in Table 2, these
discharges were randomly divided into training, validation, and test sets in a 7:1:2 ratio. A density-limit disruption
was defined as a high-density discharge in which the plasma density reached at the time of disruption. In the
identification process for both types of disruptive discharges, non-spontaneous disruptions caused by SMBI
(Supersonic Molecular Beam Injection) and SPI (Shattered Pellet Injection) were excluded.

TABLE 2. Split of datasets

Shot No. of ND Shot No. of NDLD Shot No. of DLD
Training 262 254 253
Validation 38 36 36
Test 75 73 72

4.2. Performance

The One-vs-Rest ROC is a multi-class evaluation method whose core idea is to treat each class in turn as the
positive class while merging the remaining classes as the negative class, thereby constructing multiple binary
ROC curves. Each binary ROC curve is generated by calculating the FPR and TPR under different threshold
values. As shown in Fig. 2, the One-vs-Rest ROC curves demonstrate the classification performance of the
hierarchical model across the three categories. The ROC curve for ND reaches an AUC of 0.91, while NDLD and
DLD achieve higher AUC values of 0.95 and 0.96, respectively. In addition, the macro-average ROC curve yields
an overall area of 0.94, indicating that the model maintains strong and balanced predictive capability for all three
classes.

In the disruption prediction task, the prediction is transformed from classifying individual samples to generating
time-evolving predictions for an entire discharge. In traditional binary classification, the disruptive probability
output can be distinguished using a 0—1 threshold. However, for a three-class model, threshold determination must
simultaneously account for all three categories. To address this, we selected a threshold selection criterion based

on the G-Mean metric:
G-Mean = \/TPR x(1-FPR) . %)
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FIG. 2. One-vs-Rest ROC Curves of the hierarchical classification model for the three sample categories

The confusion matrix generated from 224 discharges in the test set is shown in Fig. 3. From the confusion matrix,
it can be observed that the model achieves consistently high classification performance across all three discharge
types. Specifically, the traditional disruption prediction accuracy (disruptive vs. non-disruptive) reaches 96.0%
(215/224). The recognition accuracy for non-disruptive discharges (ND) is 96.1% (73/76), with almost no false
alarms. For non—density-limit disruptions (NDLD), the recognition accuracy is 91.9% (68/74), with a small
number of false positives and false negatives. For density-limit disruptions (DLD), the recognition accuracy is
87.8% (65/74), where most errors arise from confusion with other types of disruptions.

ND

- 40

-20

True Discharge Type
NDLD

DLD
'
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' '
ND NDLD DLD

Predicted Discharge Type

FIG. 3. Confusion matrix of prediction results for the three discharge categories

5. INTERPRETABILITY STUDY OF DENSITY LIMIT DISRUPTION PREDICTION

The hierarchical classification model is capable of successfully predicting disruptions and distinguishing density-
limit disruptions even without the Greenwald fraction as an input. This demonstrates that the model does not rely
on empirical scaling relations but can instead learn the underlying patterns from features derived through existing
physical understanding of disruptions. This section employs SHAP-based interpretability analysis to uncover the
rules identified by the model and to provide insights that may inspire future physics studies.

FIG. 4 presents the SHAP beeswarm plots of MARFE-related features, where indices 1, 2, and 3 correspond to
diagnostic positions at 0.95a, 0.82a, and 0.7a on the high- and low-field sides, respectively. Panel (a) illustrates
how the model distinguishes disruptive from non-disruptive discharges, while panel (b) shows how density-limit
disruptions are separated from other disruption types. The results indicate that signals at 0.82a, and 0.7a carry
greater importance than those at 0.95a, suggesting that MARFE formation at the very edge may not immediately
exert a decisive influence on disruption onset. Furthermore, stronger density asymmetry is consistently associated
with a higher probability of being classified as a density-limit disruption. By contrast, the contributions of CIII
radiation asymmetry and density asymmetry exhibit opposite trends: while density asymmetry strengthens the
disruption prediction, CIII asymmetry tends to mitigate it, implying a competing role between edge density
gradients and radiation asymmetries in the disruption process.

FIG. 5 shows the beeswarm plots of SHAP values for density fluctuation-related (turbulence-related) features,
where indices 1 and 2 correspond to positions at 0.7a and 0.6a, typically near the location where density fluctuation
activity is enhanced around the q = 2 surface. In Layer 1, the results indicate that stronger density fluctuations and
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steeper density gradients significantly increase the probability of disruption, reflecting the destabilizing influence
of turbulence-driven transport. In Layer 2, which differentiates density-limit disruptions from other disruption
types, the model decisions are primarily based on whether density fluctuations intensify and whether the density
gradient rises further. Moreover, density fluctuation-related features from the 0.6a show stronger discriminative
capability, suggesting that inward-shifted density fluctuation plays a more decisive role in driving the plasma
toward density-limit disruptions.

Swarm plot of SHAP values for MARFE features (Layer 1) " Swarm plot of SHAP values for MARFE featurcs (Layer 2) _
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FIG. 4. Beeswarm Plot of Global SHAP Contributions for MARFE-Related Features
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6. SUMMARY

In this work, we developed an interpretable hierarchical disruption prediction model to separate DLD from other
NDLD and ND. Unlike conventional models that implicitly depend on the Greenwald fraction, our approach
deliberately excludes such empirical scaling parameters and instead incorporates physics-guided features,
including MARFE-related asymmetries, density fluctuation measures, MHD activity, and PCS signals. The model
was implemented using LightGBM with a hierarchical classification framework, a custom hierarchical loss, and
Optuna-based Bayesian hyperparameter optimization, ensuring both robustness and interpretability.

The proposed model demonstrates strong predictive capability, achieving a macro-average AUC of 0.94 of
samples and an overall disruption prediction accuracy of 96.0% on J-TEXT experimental data. Interpretability
analysis using SHAP shows that edge density asymmetries and turbulence near 0.6a to 0.7a are decisive factors
in density-limit disruptions, while CIII radiation asymmetry tends to have a stabilizing effect. These findings
demonstrate that physics-guided machine learning can move beyond empirical scaling laws, providing both
reliable disruption prediction and valuable physical insight that can inform avoidance strategies in future tokamaks.
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