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Abstract 

Disruptions are catastrophic events in tokamak plasmas that can severely damage devices and compromise reliable 

operation, making accurate prediction and avoidance crucial for future fusion reactors. Machine learning has demonstrated 

strong potential in disruption prediction with high accuracy and computational efficiency, but its application is often limited 

by poor interpretability. These issues restrict the ability to reveal physical mechanisms and reduce the transferability of models 

across devices. To address this challenge, the paper focuses specifically on density-limit disruptions and develops an 

interpretable hierarchical classification model as a methodological attempt and validation framework. Greenwald density limit 

scaling provides the maximum density that plasma can reach under common conditions. However, greenwald fraction is also 

not the real physics of density limit disruption and cannot be used as a predictor of density limit disruption because plasma 

often disruption before the density limit is reached. The model is designed to predict density-limit disruptions, other disruptions, 

and non-disruptive discharges by excluding empirical scaling parameters and instead incorporating physics-guided features 

such as MARFE-related radiation asymmetries, density fluctuations, MHD activity, and plasma control system parameters. 

The framework employs LightGBM with a hierarchical loss function and Bayesian hyperparameter optimization to ensure 

both robustness and interpretability. Evaluation on 1,099 discharges from J-TEXT shows that the model achieves an overall 

accuracy of 96.0% for the discharges in test set. Interpretability analysis with SHAP indicates that density asymmetry and 

density fluctuations near 0.6a–0.7a are decisive factors in density-limit disruptions, while CIII radiation asymmetry shows a 

stabilizing effect. These findings confirm that the proposed method provides a feasible and interpretable approach for density-

limit disruption prediction, demonstrating that physics-guided machine learning can move beyond empirical scaling to capture 

meaningful mechanisms and inspire more reliable disruption avoidance strategies in future tokamaks. 

1. INTRODUCTION 

Disruption is a catastrophic event in tokamak plasmas that requires prediction, mitigation and avoidance [1,2]. Data-

driven disruption prediction has been increasingly investigated and promoted due to its outstanding performance 
[3–16]. However, most data-driven models are based on machine learning, which leads to a lack of interpretability. 

Investigating the interpretability of disruption prediction models not only validates the reliability of the models 

but also helps researchers understand the disruption rules that the models have learned. This helps researchers 

gain a deeper understanding of disruption physics, develop more suitable cross-machine models, and implement 

disruption avoidance strategies targeting the disruption causes.  

 

Various interpretable or explainable disruption prediction approaches have been developed in JET [7,8], DIII-D [17], 

HL-2A [18], EAST [11] and J-TEXT [5,19] based on the Post-hoc interpretability methods [20]. While these approaches 

help validate models, their primary focus has been on verifying reliability rather than decoding the physical 

mechanisms underlying the predictions. Consequently, the potential of interpretability as a tool for uncovering 

disruption physics remains underexplored. 

 

Understanding the causes of disruptions is not only of academic value but also of practical importance. Decoding 

the patterns embedded in large datasets can provide deeper insight into disruption physics, support the design of 

transferable cross-machine models, and enable intervention strategies targeting early precursors. However, the 

study of disruptions is inherently complex, making it extremely challenging to conduct interpretability research 

across all disruption types simultaneously. Since different types of disruptions involve distinct and possibly 

coupled physical mechanisms, interpretability studies focused on specific disruption categories offer a more 

promising route to bridge data-driven models with physical understanding. 

 

High-density operation is particularly urgent for future tokamaks, as sustaining burning plasmas requires 

achieving high plasma density. However, the density limit imposes a fundamental constraint that substantially 

increases disruption risk. To address this, we first built a conventional model to predict all types of disruptions. 
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This model successfully identified the scaling relationship between plasma current and core density, analogous to 

the Greenwald scaling law. Nevertheless, in density-limit extension experiments with Resonant Magnetic 

Perturbations (RMPs), the model became overly sensitive to the line-averaged density because of its reliance on 

this scaling law, while neglecting important variations at the plasma boundary. This highlights the need for 

interpretable models capable of capturing the actual physical mechanisms driving high-density disruptions, rather 

than merely reproducing empirical scaling laws. 

 

In this paper, we propose a new interpretable high-density disruption prediction model based on hierarchical 

classification and high-density related features. Section 2 introduces the interpretability study of high-density 

disruptions using the conventional model. Section 3 presents the overall model framework, including feature 

extraction with both non-Greenwald and physics-guided high-density features. Section 4 describes the dataset, 

including the data selection criteria and preprocessing procedures. Section 5 outlines the training strategy, the tri-

classification approach, and evaluates the predictive performance of the proposed model. Section 6 provides 

interpretability analyses, validating the role of edge parameters and other physics-informed features. Finally, 

Section 7 summarizes the main findings and discusses their implications for disruption prediction and avoidance 

in future devices. 

 

2. GREENWALD FRACTION BIAS IN DISRUPTION MODELING 

An interpretable disruption predictor based on physics-guided feature extraction (IDP-PGFE) was recently 

developed and successfully applied on the J-TEXT tokamak [5]. This model represents a significant advancement 

in disruption prediction research because it combines the accuracy of modern machine learning with the 

interpretability provided by physics-guided features. By incorporating diagnostic signals related to 

magnetohydrodynamic (MHD) instabilities, radiation, density evolution, and basic plasma control system 

parameters, IDP-PGFE not only achieves a high degree of predictive accuracy but also offers insight into the 

underlying mechanisms that govern disruption onset. On J-TEXT experimental datasets, the model exhibits high 

predictive performance, with a true positive rate (TPR) of 97.27% and a false positive rate (FPR) as low as 5.45%. 

These results demonstrate that the predictor has learned sufficiently meaningful physical patterns to distinguish 

between disruptive and non-disruptive discharges, outperforming conventional data-driven approaches that rely 

solely on raw diagnostic signals. 

A crucial aspect of IDP-PGFE lies in its interpretability. The model employs SHapley Additive exPlanations 

(SHAP)21 to evaluate the contribution of individual physics-guided features to the prediction outcome. Detailed 

examination of the central line-averaged density and plasma current features revealed that the model may have 

effectively captured the essence of the Greenwald density limit scaling law [22]. Specifically, the SHAP analysis 

showed that when the plasma density approaches or exceeds a critical threshold relative to plasma current, the 

model assigns a higher disruptive contribution, mimicking the well-known empirical scaling that describes density 

limits in tokamaks. For example, when density values were above approximately 4 × 1019 m−3, the contribution to 

disruption increased significantly, particularly when the plasma current was below 180 kA. Conversely, for 

plasma currents above 200 kA, the model recognized that higher density could still be tolerated without immediate 

disruption risk, in agreement with the higher Greenwald limit at stronger plasma currents. This finding suggests 

that the machine learning model, despite being trained only on experimental data, has internalized a key empirical 

scaling relation widely used in plasma physics. 

However, while this alignment with the Greenwald law reflects the model’s capacity to embed physical intuition, 

it also introduces potential biases that limit its interpretability and reliability in certain scenarios. The Greenwald 

fraction bias strongly affects the predicted results because the model tends to overemphasize density contributions 

in disruption assessment. A notable example is discharge #1080500, which was falsely alarmed by IDP-PGFE. In 

this case, the model predicted disruption primarily due to the high central density contribution. Yet, in the actual 

experiment, disruption was successfully avoided because the application of 3/1 and 4/1 resonant magnetic 

perturbations (RMPs) effectively modified the plasma radiation profile and stabilized the system against density-

limit-driven termination. Interpretability analysis reveals that the model can identify variations in the contribution 

of the radiation profile to density-limit disruptions, but this effect is far outweighed by the dominance of the 

scaling relation. As a result, the predictor tends to rely on empirical density–disruption correlations rather than 

capturing the underlying physical stabilization mechanisms, such as impurity transport modification and 

turbulence suppression induced by RMPs. Thus, the contribution of the core density feature, though useful as a 

statistical indicator, cannot fully reflect the real physics of high-density disruption.  
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To address these challenges and further enhance interpretability, we propose the development of a new disruption 

prediction framework that explicitly removes empirical constraints such as the implicit dependence on Greenwald 

fraction scaling. Instead, the improved model should integrate features directly linked to high-density disruption 

physics. This approach would reduce over-reliance on density as a surrogate and provide a more mechanistic 

understanding of high-density disruptions. Such integration would significantly improve the predictor’s ability to 

generalize across experimental scenarios and across machines. 

3. THE INTERPRETABLLE HIGH-DENSITY DISRUPTION PREDICTION MODEL 

We trained a hierarchical multi-label classification model based on LightGBM (LGB) to differentiate density limit 

disruptions, other disruption types, and non-disruptive discharges. The primary objective of this model is to 

identify which features can most effectively distinguish high-density disruption from all the disruption through the 

interpretable disruption prediction model. To mitigate potential bias induced by the Greenwald fraction, we 

deliberately exclude core density and plasma current as a model input feature. Instead, we preferred the physics 

features, such as edge transport, radiation profile (such as multifaceted asymmetric radiation from the edge, 

MARFE), high-density front, and MHD instabilities. The hierarchical multi-label classification model is designed 

to first distinguish between disruption and non-disruption events, and then further categorize disruptions into high-

density disruptions and other types. To enforce hierarchical consistency, we designed a hierarchical cross-entropy 

loss that penalizes violations of the class structure. This framework produced a parent-class disruption prediction 

model and a subclass high-density disruption model.  

3.1. Non-Greenwald scaling law factors 

In this section, the non-Greenwald scaling law factors will be introduced. To prevent the model from simply 

learning empirical scaling relations, the most effective approach is to restrict such empirical scaling parameters at 

the input stage. Table 1 show the overview of features used in this model, the MARFE-related features are 

represented by ratios of diagnostic measurements obtained at different radial positions, which serve as proxies for 

characterizing radiation asymmetry. The numerical subscripts denote normalized minor radii (e.g., 95 corresponds 

to r/a = 0.95), thereby capturing radial variations in radiation behaviour. The Density Fluctuations features are 

introduced to reflect high-frequency perturbations that are indicative of turbulence, even though turbulence 

characterization itself is inherently complex. Here, the normalized gradient of line-integrated density (Den_ngrad) 

is evaluated specifically at r/a = 0.6 and r/a = 0.7. In addition, all fluctuation-related frequency components are 

filtered to exclude contributions below 20 kHz, ensuring that only high-frequency dynamics are represented. For 

the MHD category, Mirnov probe signals are processed to extract both frequency and amplitude information, 

along with the average poloidal mode number. These features are designed to capture magnetohydrodynamic 

activity, which is directly linked to the onset and evolution of instability precursors. Finally, the PCS-related 

features include toroidal field as well as plasma horizontal and vertical displacements, which are directly obtained 

from the plasma control system. These parameters provide essential information about the equilibrium and control 

of the plasma. 

3.2. Improvement of Decision Tree Model Based on Hierarchical Classification 

In this work, the objective is to distinguish density-limit disruptions from other types of disruptions, which 

naturally leads to a three-class classification problem. The three categories are density-limit disruptions (DLD), 

non–density-limit disruptions (NDLD), and non-disruptive discharges (ND). However, since general disruptions 

and density-limit disruptions are not parallel categories, a hierarchical classification approach is adopted in the 

machine learning framework. To provide stronger interpretability in subsequent analyses, this study does not 

employ deep learning models but instead adopts the decision tree–based LGB model. The main structure of the 

hierarchical classification model is shown in FIG. 1. FIG. 1 illustrates the overall structure of the hierarchical 

classification framework. The label system is organized hierarchically, where non-disruptive discharges (ND) are 

separated from disruptive ones in the first layer, and the second layer further distinguishes between non–density-

limit disruptions (NDLD) and density-limit disruptions (DLD). The first layer (LGB Model 1) is trained with a 

hierarchical loss function to reduce error propagation, while its hyperparameters are optimized using Optuna with 

the F1-score as the evaluation target. The second layer (LGB Model 2) applies feature enhancement by 

incorporating the first-layer prediction as an additional input feature, which is then used alongside the original 

features to train the classifier. A binary log-loss is adopted as the objective function, and hyperparameter 

optimization is also performed with Optuna. The final prediction probabilities are derived by combining outputs 

from both layers, enabling consistent hierarchical decision-making. Model evaluation adopts hierarchical 
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accuracy and hierarchical F1-score to ensure that performance metrics respect the hierarchical label dependency 

and provide a comprehensive measure of classification reliability. 

TABLE 1. Overview of Features Used in This Model 

Physics Relation Feature Names Physical Meanings 

MARFE 

CIIIAsym (95/82/70) Asymmetry of CIII Radiation 

HαAsym (95/82/70) Asymmetry of Hα Radiation  

DensAsym (95/82/70) Asymmetry of Line-Integrated Density 

Density Fluctuations 

Den_ngrad Line-Integrated Density Normalized Gradient 

DenFlu_int (70,60) Standard Deviation of Density Fluctuations 

DensFlu_fre (70,60) Density Fluctuations Frequency 

DensFlu_amp (70,60) Density Fluctuations amplitude 

MHD  

MHD_fre Mirnov probe frequency 

MHD_amp Mirnov probe amplitude 

MNM Average Poloidal Mode Number 

PCS 

bt Toroidal Field 

dx Plasma Horizontal Displacement 

dy Plasma Vertical Displacement 

 

 
FIG. 1. Architecture of the proposed Hierarchical Decision Tree Model 

For each sample, we define a label pair (y (1), y (2)), where (0, 0) denotes a non-disruptive discharge, (1, 0) denotes 

a non–density-limit disruption, and (1, 1) denotes a density-limit disruption. The training objective of the first-

layer model (LGB Model 1) is to predict whether a disruption will occur, corresponding to label, with the 

optimization target being the improved hierarchy-aware loss function (Hierarchical Loss): 
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where is a hyperparameter that controls the penalty strength. The second-layer model (LGB Model 2) constructs 

feature enhancement based on the output of the first layer, introducing the first-layer prediction as a new input 

feature. Together with the original features, this augmented input is used to train the second-layer classifier, which 

predicts the specific disruption type. During evaluation, hierarchical accuracy and hierarchical F1-score are 

adopted to comprehensively assess model performance, ensuring that hierarchical dependencies are respected 

while maximizing both classification capability and interpretability. Hierarchical accuracy requires that 

predictions at all levels be simultaneously correct for a sample to be considered correctly classified, which is 

formally expressed as: 

 (1) (1) (2) (2)

1

1
ˆ ˆHierarchical Accuracy (  and )1

N

i i i i

i

y y y y
N =

= = = , (3) 

where N denotes the total number of samples, 1(·) is the indicator function that equals 1 when the prediction is 

entirely correct and 0 otherwise, (1) (2)ˆ ˆ,i iy y represent the predicted labels from the first and second layers, 

respectively. The Hierarchical F1-Score extends the traditional F1-score, which is designed for single-level 

classification, to the hierarchical case. In hierarchical classification, the entire label path must be predicted 

correctly; therefore, the hierarchical F1-Score is defined with respect to the complete set of hierarchical label 

combinations. The final formula for the hierarchical F1-Score is expressed as: 

 Hierarchical Precision Hierarchical Recall
Hierarchical F1-Score 2

Hierarchical Precision Hierarchical Recall


= 

+
. (4) 

 
4. TRAINING AND PERFORMANCE 

4.1. Database 

In this paper, the database search covered a total of 38,000 discharge experiments conducted on the J-TEXT device 

between January 16, 2017, and December 30, 2022. The selection criteria are that the diagnostics of all the 

discharges should be available for extracting feature in table 1 and the discharge should at least maintain 0.2 

second. From these, 1,099 discharges that met the selection criteria were chosen. As shown in Table 2, these 

discharges were randomly divided into training, validation, and test sets in a 7:1:2 ratio. A density-limit disruption 

was defined as a high-density discharge in which the plasma density reached at the time of disruption. In the 

identification process for both types of disruptive discharges, non-spontaneous disruptions caused by SMBI 

(Supersonic Molecular Beam Injection) and SPI (Shattered Pellet Injection) were excluded. 

TABLE 2. Split of datasets 

 Shot No. of ND Shot No. of NDLD  Shot No. of DLD 

Training 262 254 253 

Validation 38 36 36 

Test 75 73 72 

4.2. Performance 

The One-vs-Rest ROC is a multi-class evaluation method whose core idea is to treat each class in turn as the 

positive class while merging the remaining classes as the negative class, thereby constructing multiple binary 

ROC curves. Each binary ROC curve is generated by calculating the FPR and TPR under different threshold 

values. As shown in Fig. 2, the One-vs-Rest ROC curves demonstrate the classification performance of the 

hierarchical model across the three categories. The ROC curve for ND reaches an AUC of 0.91, while NDLD and 

DLD achieve higher AUC values of 0.95 and 0.96, respectively. In addition, the macro-average ROC curve yields 

an overall area of 0.94, indicating that the model maintains strong and balanced predictive capability for all three 

classes. 

 

In the disruption prediction task, the prediction is transformed from classifying individual samples to generating 

time-evolving predictions for an entire discharge. In traditional binary classification, the disruptive probability 

output can be distinguished using a 0–1 threshold. However, for a three-class model, threshold determination must 

simultaneously account for all three categories. To address this, we selected a threshold selection criterion based 

on the G-Mean metric: 

 G-Mean TPR (1 FPR)=  − . (5) 
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FIG. 2. One-vs-Rest ROC Curves of the hierarchical classification model for the three sample categories  

 

The confusion matrix generated from 224 discharges in the test set is shown in Fig. 3. From the confusion matrix, 

it can be observed that the model achieves consistently high classification performance across all three discharge 

types. Specifically, the traditional disruption prediction accuracy (disruptive vs. non-disruptive) reaches 96.0% 

(215/224). The recognition accuracy for non-disruptive discharges (ND) is 96.1% (73/76), with almost no false 

alarms. For non–density-limit disruptions (NDLD), the recognition accuracy is 91.9% (68/74), with a small 

number of false positives and false negatives. For density-limit disruptions (DLD), the recognition accuracy is 

87.8% (65/74), where most errors arise from confusion with other types of disruptions. 

 
FIG. 3. Confusion matrix of prediction results for the three discharge categories 

5. INTERPRETABILITY STUDY OF DENSITY LIMIT DISRUPTION PREDICTION 

The hierarchical classification model is capable of successfully predicting disruptions and distinguishing density-

limit disruptions even without the Greenwald fraction as an input. This demonstrates that the model does not rely 

on empirical scaling relations but can instead learn the underlying patterns from features derived through existing 

physical understanding of disruptions. This section employs SHAP-based interpretability analysis to uncover the 

rules identified by the model and to provide insights that may inspire future physics studies. 

FIG. 4 presents the SHAP beeswarm plots of MARFE-related features, where indices 1, 2, and 3 correspond to 

diagnostic positions at 0.95a, 0.82a, and 0.7a on the high- and low-field sides, respectively. Panel (a) illustrates 

how the model distinguishes disruptive from non-disruptive discharges, while panel (b) shows how density-limit 

disruptions are separated from other disruption types. The results indicate that signals at 0.82a, and 0.7a carry 

greater importance than those at 0.95a, suggesting that MARFE formation at the very edge may not immediately 

exert a decisive influence on disruption onset. Furthermore, stronger density asymmetry is consistently associated 

with a higher probability of being classified as a density-limit disruption. By contrast, the contributions of CIII 

radiation asymmetry and density asymmetry exhibit opposite trends: while density asymmetry strengthens the 

disruption prediction, CIII asymmetry tends to mitigate it, implying a competing role between edge density 

gradients and radiation asymmetries in the disruption process. 

 

FIG. 5 shows the beeswarm plots of SHAP values for density fluctuation-related (turbulence-related) features, 

where indices 1 and 2 correspond to positions at 0.7a and 0.6a, typically near the location where density fluctuation 

activity is enhanced around the q = 2 surface. In Layer 1, the results indicate that stronger density fluctuations and 
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steeper density gradients significantly increase the probability of disruption, reflecting the destabilizing influence 

of turbulence-driven transport. In Layer 2, which differentiates density-limit disruptions from other disruption 

types, the model decisions are primarily based on whether density fluctuations intensify and whether the density 

gradient rises further. Moreover, density fluctuation-related features from the 0.6a show stronger discriminative 

capability, suggesting that inward-shifted density fluctuation plays a more decisive role in driving the plasma 

toward density-limit disruptions. 

 
FIG. 4. Beeswarm Plot of Global SHAP Contributions for MARFE-Related Features 

 

 
FIG. 5. Beeswarm Plot of Global SHAP Contributions for density fluctuation-related Features 

 

6. SUMMARY 

In this work, we developed an interpretable hierarchical disruption prediction model to separate DLD from other 

NDLD and ND. Unlike conventional models that implicitly depend on the Greenwald fraction, our approach 

deliberately excludes such empirical scaling parameters and instead incorporates physics-guided features, 

including MARFE-related asymmetries, density fluctuation measures, MHD activity, and PCS signals. The model 

was implemented using LightGBM with a hierarchical classification framework, a custom hierarchical loss, and 

Optuna-based Bayesian hyperparameter optimization, ensuring both robustness and interpretability. 

 

The proposed model demonstrates strong predictive capability, achieving a macro-average AUC of 0.94 of 

samples and an overall disruption prediction accuracy of 96.0% on J-TEXT experimental data. Interpretability 

analysis using SHAP shows that edge density asymmetries and turbulence near 0.6a to 0.7a are decisive factors 

in density-limit disruptions, while CIII radiation asymmetry tends to have a stabilizing effect. These findings 

demonstrate that physics-guided machine learning can move beyond empirical scaling laws, providing both 

reliable disruption prediction and valuable physical insight that can inform avoidance strategies in future tokamaks. 
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