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Abstract

A heterogeneous-feature multi-task learning (HFMTL) framework is proposed for simultaneous tokamak plasma dis-
ruption prediction (DP), edge localized mode (ELM) detection, multifaceted asymmetric radiation from the edge (MARFE)
detection, and H-mode/L-mode (H/L) identification. Due to the significant heterogeneity of the key signal features underlying
these four tasks, conventional multi-task learning (MTL) underperforms single-task learning (STL). To address this limita-
tion, HFMTL incorporates a specialized gated mixture-of-experts neural network, enabling each task branch to adaptively
retain highly correlated signal features while suppressing interference from weakly correlated ones. Additionally, HFMTL
leverages physics-informed priors in data preprocessing, loss function design, and parameter initialization to further enhance
performance. The advantages of HFMTL are demonstrated using ∼10000 historical discharges from the EAST tokamak,
spanning two wall configurations: pre-upgrade non-full metal wall (non-FMW) and post-upgrade full metal wall (FMW).
Trained and tested on non-FMW dataset, HFMTL achieves AUC(DP)=0.986, AUC(ELM)=0.996, AUC(MARFE)=0.975,
AUC(H/L)=0.999. Then, tested directly on FMW dataset without any retraining, HFMTL still achieves AUC(DP)=0.965,
AUC(ELM)=0.973, AUC(MARFE)=0.935 and AUC(H/L)=0.985. These HFMTL’s AUC values are superior to those of con-
ventional MTL and STL. Compared to previous EAST DP model (achieving AUC(DP)=0.97 on non-FMW and 0.72 on FMW),
HFMTL demonstrates a significant improvement in zero-shot cross-wall DP performance. Notably, Pearson correlation analy-
sis shows HFMTL’s MARFE detection output correlates positively with DP output (r=0.437), whereas ELMs output correlate
negatively with DP (r=-0.322). These correlations emerge naturally from the dataset without prior-restriction, and in agreement
with an independent investigation at JET. The paper presents a promising strategy for the integrated monitoring of tokamak
plasma states, with potential applications in targeted disruption avoidance for different precursor phenomena.

1. INTRODUCTION

Automatic monitoring and prediction of key plasma phenomena are crucial for the safe, high-performance oper-
ation of tokamaks. Plasma disruptions pose a significant risk to next generation high-power tokamaks, making
reliable disruption prediction (DP) essential for implementing mitigation strategies[1]. Since disruptions are often
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preceded by precursor phenomena like instabilities (e.g., MARFE, ELM) or confinement degradation, integrating
DP with precursor monitoring can enable deeper causal analysis and facilitate targeted interventions[2].

Machine learning (ML), particularly Multi-Task Learning (MTL), offers a promising path toward an integrated
monitoring solution. By training multiple related tasks within an unified model, MTL can improve generaliza-
tion, reduce deployment costs, and leverage inter-task correlations to enhance performance[3]. Indeed, MTL is
increasingly applied in tokamak research, with studies showing improved performance and interpretability for
tasks like joint disruption and precursor identification[4], as well as simultaneous ELM detection and H/L mode
classification[5].

However, MTL is susceptible to ”negative transfer,” where inappropriate information sharing between tasks
degrades performance, sometimes falling below that of single-task learning (STL) models. This issue has been
observed in fusion research, for instance, when low-accuracy precursor detection harmed DP performance on
DIII-D[4], and has been reported in other predictive modeling tasks for tokamaks[6, 7]. Despite its prevalence,
strategies to mitigate negative transfer in fusion applications remain underexplored.

To address this challenge, we propose a Heterogeneous-Feature Multi-Task Learning (HFMTL) framework,
motivated by the insight that feature space heterogeneity across tasks is a primary driver of negative transfer. We
validate HFMTL on the EAST tokamak using four physically coupled yet feature-heterogeneous tasks: disruption
prediction (DP), ELM detection, MARFE detection, and H/L confinement mode identification[8, 9].

The HFMTL model was trained exclusively on data from EAST’s pre-upgrade non-full-metal-wall (non-
FMW) configuration and tested on both unseen non-FMW and post-upgrade full-metal-wall (FMW) datasets[10].
On the non-FMW test set, HFMTL outperformed both STL and conventional MTL, achieving AUC scores of
0.986 (DP), 0.996 (ELM), 0.975 (MARFE), and 0.999 (H/L). Crucially, without retraining, the model demon-
strated excellent zero-shot generalization to the FMW dataset, with AUCs of 0.965 (DP), 0.973 (ELM), 0.935
(MARFE), and 0.985 (H/L). This marks a significant improvement over a previous model whose zero-shot DP
performance on the FMW set was notably lower (AUC of 0.72)[11].

This paper is organized as follows: Section 2 details the database and tasks, Section 3 introduces the HFMTL
framework, Section 4 presents the results.

2. DATABASE AND PRE-PROCESSING

This study utilizes 45 signals from the EAST tokamak [12, 13, 14, 4, 11], summarized in Table 1. All signals are
interpolated to 1 kHz and normalized for training stability. To preserve relative distributions, signals within the
same group (e.g., Dα channels) share normalization parameters. Crucially, different tasks rely on heterogeneous
subsets of these signals, as detailed in Table 2. For instance, while Iic is vital for DP, it is weakly correlated with
H/L identification. Including such weakly correlated signals degrades single-task performance. Therefore, these
key signal subsets are used as inputs for single-task learning (STL) models and to provide physics-informed priors
for the proposed HFMTL framework (as described in Section 3).

TABLE 1. Input Signals

Group No. Symbol Description Signal Count
1 aPXUVmain Fast bolometers XUV channel of main-region 19
2 bPXUVedge Fast bolometers XUV channel of edge-region 4
3 cDα Deuterium Balmer-α line emission spectrum 4
4 POWERs PNBI, PLH, PICRF, POHM, PECRH, PRAD 6
5 Vloop Loop voltage 1
6 Zerror The Z error after the high-pass filter in fast Z control 1
7 Iic Current of in-vessel coil in fast Z control 1
8 Ip Plasma current 1
9 Iperror norm (Ip− Programmed Ip)/Programmed Ip 1

10 fGW Electron density/Greenwald density 1
11 kappa Plasma elongation 1
12 li Internal Inductance 1
13 Wmhd Plasma stored energy 1
14 q95 Safety factor at the 95% flux surface 1
15 Bcenter Magnetic Field at the toroidal magnetic axis 1
16 aminor Minor radius of plasma 1

aPXUVmain channels: 54,9,52,11,48,13,46,17,44,19,42,22,39,24,36,26,34,29,32; The purpose of this staggered arrangement is to make it
easier for CNNs to learn the Z-symmetry feature of the radiation profile
bPXUVedge channels: 2,6,56,58
cDα channels: L1,L2,U2,U3
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TABLE 2. Key Signal Subsets Corresponding to Each Task

Task Signal
DP ALL signals

ELM Dα, PXUVedge, fGW, Wmhd, Ip, aminor , Vloop, Bcenter

MARFE PXUVmain, Wmhd, fGW, POWERs
H/L Dα, PXUVedge, fGW, Wmhd, Ip, aminor , Vloop, Bcenter

The database comprises 9833 discharges from EAST (2015–2024), spanning both non-full-metal-wall (non-
FMW) and post-upgrade full-metal-wall (FMW) configurations. Non-FMW data was partitioned by shot number
into training, validation, and testing sets. The FMW data was reserved exclusively as a test set to evaluate zero-
shot generalization. All tasks use supervised learning with expert-annotated labels applied only during the plasma
flattop phase. For the DP task, training/validation data is labeled with ”safe” and ”unsafe” phases (200 ms pre-
disruption), while test data uses only shot-level ”disruptive” vs. ”non-disruptive” labels. For ELM, MARFE,
and H/L identification, specific time intervals of their occurrence are annotated on subsets of discharges. Table 3
provides a detailed summary of the dataset partitioning and annotation.

TABLE 3. Dataset Partitioning and Annotation Overview

2*
Task
Type Non-FMW FMW

Training(6545) Validation(1417) Testing(1325) Testing(546)

DP

Disrupt Shotsa: 1984
nonDisrupt Shots: 4561
unsafeb: 396.8s
safe: 31635.9s

Disrupt Shots: 437
nonDisrupt Shots: 980
unsafe: 87.4s
safe: 6913.8s

Disrupt Shots: 477
nonDisrupt Shots: 848
unsafe: N/A
safe: N/A

Disrupt Shots: 212
nonDisrupt Shots: 334
unsafe: N/A
safe: N/A

ELMs
Shots: 334
ELM: 492.2s
nonELM: 392.2s

Shots: 66
ELM: 98.3s
nonELM: 234.1s

Shots: 81
ELM: 98.8s
nonELM: 252.2s

Shots: 138
ELM: 531.3s
nonELM: 696.5s

MARFE
Shots: 55
MARFE: 27.4s
nonMARFE: 202.7s

Shots: 82
MARFE: 20.4s
nonMARFE: 207.1s

Shots: 41
MARFE: 11.2s
nonMARFE: 106.4s

Shots: 69
MARFE: 42.4s
nonMARFE: 83.4s

H/L
Shots: 132
H-mode: 51.9s
L-mode: 100.8s

Shots: 73
H-mode: 105.7s
L-mode: 47.4s

Shots: 75
H-mode: 108.0s
L-mode: 86.5s

Shots: 133
H-mode: 542.8s
L-mode: 119.7s

a Disrupt/NonDisrupt Shots: Count of plasma discharges with/without disruption.
b Safe/Unsafe: Cumulative duration (in seconds) annotated as safe/unsafe phases. For the testing dataset, disruption prediction only requires shot-level performance
metrics, so detailed safe/unsafe phase annotations are omitted (N/A). For all other tasks, the definition follows analogously, denoting the total annotated duration
for ”MARFE occurrence/non-occurrence, ELM occurrence/non-occurrence, H-mode occurrence/L-mode occurrence”.

Using a ”sequence-to-label” approach[14, 4], we extract 100 ms input sequences (X , shape: 45 × 100) via a
sliding window. A corresponding 4D label vector (Y ) is generated from the annotations at the final timestep of
each sequence, encoding the status of DP (1 for unsafe), ELMs (1 for active), MARFE (1 for active), and H/L
mode (1 for H-mode). Due to limited annotation resources, not all labels exist for every sample. These unannotated
labels are marked as ”missing” and are ignored during loss computation. This ”missing label” mechanism is also
used to address class imbalance by randomly masking labels from majority-class samples in the training set.

3. METHODS

3.1. Model Architecture

To address the heterogeneous signal dependencies of four distinct tasks—disruption prediction (DP), ELM detec-
tion, MARFE detection, and H/L-mode identification—we developed a specialized Multi-Task Learning (MTL)
model. Inspired by the Multi-gate Mixture-of-Experts (MMoE) paradigm[15], our architecture (Fig. 1) is designed
to prevent performance degradation from irrelevant signals. It comprises three main components: expert modules,
gating modules, and task heads.

Unlike standard MMoE, input signals are first partitioned into physically meaningful groups (Table 1), with
each group processed by a dedicated convolutional expert module. This prevents information confusion during
feature extraction. The features from all experts are then adaptively weighted by a task-specific gating module
before being passed to the corresponding task head. The gate calculates a weight vector w using a softmax

3
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function, which amplifies relevant features while suppressing other irrelevant features:

wi =
exp

(
vi/Tc

)∑16
j=1 exp

(
vj/Tc

) , (1)

where v is a trainable parameter vector and Tc is a temperature coefficient. To incorporate prior knowledge, v
is initialized based on the key signal subsets for each task (Table 2), providing a physics-informed starting point.
Finally, each task head uses linear layers to produce a prediction from the weighted features. Although experts
operate on separate inputs, they are updated by gradients from all tasks, enabling them to learn generalizable
representations.

FIG. 1. Schematic diagrams of the model structure. a) shows the overall model structure, b) details of the gating
layer, c) details of an expert module in the feature extractor, and d) details of a task branch.

3.2. Loss Function

The total loss Ltotal combines a main task loss Lmain and a physics-informed regularization term Lphys, where
samples with missing labels are excluded from the loss calculation of the corresponding task.

Ltotal = Lmain + Lphys (2)

The main loss is a weighted sum of the binary cross-entropy (BCE) losses for the four tasks:

Lmain =
∑

t∈Tasks

αtLt, where Lt =
1

Nt

Nt∑
n=1

ℓBCE(y
(n)
t , ŷ

(n)
t ) (3)

The Lphys term, defined as Lphys =
∑2

k=1 αk · Lphys,k, enforces physical consistency by penalizing predictions
that violate two known priors:

1. ELMs occur only in H-mode: Penalizes low H-mode probability for ELM-positive samples.

Lphys,1 =
1

NELM

NELM∑
n=1

y
(n)
ELM ·

(
− ln(ŷ

(n)
H/L)

)
(4)

2. L-mode is ELM-free: Penalizes high ELM probability for L-mode samples.

Lphys,2 =
1

NH/L

NH/L∑
n=1

(
1− y

(n)
H/L

)
·
(
− ln(1− ŷ

(n)
ELM)

)
(5)
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3.3. Model Training and Hyperparameter Optimization

Models were trained using the Adam optimizer with an ”asynchronous early-stopping mechanism,” where a task’s
loss weight is halved if its validation loss stagnates, and global training terminates if all tasks stagnate. We
optimized hyperparameters using a genetic algorithm to maximize the sum of AUCs on the validation set. The
final optimized configuration, achieves an inference time under 1 ms on an NVIDIA RTX 4090D GPU, satisfying
real-time processing requirements.

4. RESULTS AND DISCUSSION

4.1. Evaluation and Performance

We evaluated performance using shot-level metrics (AUC, warning time) for disruption prediction (DP) and
sample-level AUC for ELM detection, MARFE detection, and H/L identification. The HFMTL model was trained
on non-FMW data and tested on both unseen non-FMW and FMW datasets, with all results averaged over 20
independent trials.

For the DP task, HFMTL achieved a state-of-the-art AUC of 0.986 ± 0.002 on the non-FMW test set and a
robust zero-shot AUC of 0.965 ± 0.009 on the FMW set, significantly outperforming previous benchmarks[11]
(Fig. 2). At a fixed FPR of 0.08, it provided ample warning times on both datasets (Fig. 3). The framework also
showed excellent performance on the other tasks (Figs. 4, 5, 6). Specifically, trained and tested on the non-FMW
dataset, HFMTL achieved AUC(DP)=0.986, AUC(ELM)=0.996, AUC(MARFE)=0.975, and AUC(H/L)=0.999.
When tested directly on the FMW dataset without retraining, the model maintained high performance with
AUC(DP)=0.965, AUC(ELM)=0.973, AUC(MARFE)=0.935, and AUC(H/L)=0.985. Example operational traces
confirm the model’s real-time accuracy in identifying precursors and predicting disruptions (Figs. 7).

FIG. 2. Disruption Prediction ROC-
AUC.

FIG. 3. Fraction of Detected Disrup-
tions vs. Warning Time.

FIG. 4. ELM ROC-AUC. FIG. 5. MARFE ROC-AUC. FIG. 6. H/L ROC-AUC.

4.2. Model Comparison and Ablation

To validate our approach, we compared HFMTL against three architectural variants: a conventional MTL model,
an STL model with all signals, and an STL model with task-specific signals (Fig. 8). Results from these ablation
studies (Fig. 9) confirm that weakly correlated signals introduce noise that degrades performance in STL models.
HFMTL consistently outperformed all variants, demonstrating that its gating mechanism effectively mitigates neg-
ative transfer by adaptively managing feature heterogeneity, leading to significant performance gains and reduced
variance.

5
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(a) EAST #93475 (b) EAST #70117

FIG. 7. Schematic diagram of HFMTL model operation on non-FMW disruptive and non-disruptive shots data.

FIG. 8. Schematic diagrams of the comparative models for ablation.

FIG. 9. Ablation experiment results comparing HFMTL with variants.
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4.3. Interpretability and Physics Consistency

Analysis of the learned gating module weights provides model interpretability (Fig. 10). The final weights, adapted
from their physics-informed initializations, align with established physics: the DP task emphasizes main-region
radiation and vertical control signals; ELM detection emphasizes top and bottom radiation; MARFE detection
focuses on abnormal bulk radiation; and H/L identification relies on confinement and ELM activity signals. This
confirms the model learns to prioritize physically relevant features for each task.

Furthermore, we computed Pearson correlations between the model’s task outputs to test for physical consis-
tency (Fig. 11). The results reveal physically meaningful relationships: a negative correlation between DP and
ELM (r = −0.322), a positive one between DP and MARFE (r = 0.437), and a strong positive link between
ELM and H/L (r = 0.844). These correlations align with findings from other devices[sieglin2024disruption,
sieglin2025hmode, 8] and, crucially, emerged spontaneously from the data without being explicitly encoded in
the loss function (except for the ELM-H/L link). This demonstrates the model’s ability to uncover underlying
physics knowledge.

FIG. 10. The weight distributions of gating modules in HFMTL for four key tasks. Orange bars denote the
initialized weights, while blue bars represent the final weight statistics from models trained with 20 different
random seeds.

FIG. 11. Pearson correlation matrix of task outputs.
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