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1. INTRODUCTION 

Accurate disruption prediction is one of the keys for tokamaks to be commercially viable reactors. Machine 

learning disruption predictors exhibit good performance on the machines they are trained on. However, future 

reactors cannot provide enough disruption data before they damage themselves [1-3]. Current research has 

explored cross-tokamak disruption prediction by using data from multiple existing tokamaks, showing that the 

physical information contained in such data can reduce the model's dependency on data from a new device [4-6]. 

Nevertheless, this approach still requires accumulating a certain number of discharge shots on the new device for 

model training and cannot achieve disruption prediction starting from the very first discharge. Moreover, for future 

large scale experimental tokamak reactors, at different operation phases, they will have different goals, generate 

different data with different risks. The requirements on disruption prediction system are different. Studies have 

indicated that traditional machine learning models lack sufficient robustness against such variations [7]. 

Consequently, research has been conducted to enable disruption models to automatically adapt to changing 

operation scenarios. For example, one strategy involves periodically adding the latest discharge samples to the 

training set and retraining the model, allowing model to learn discharge characteristics in new operation scenarios 

[8,9]. Auxiliary strategies, such as discarding outdated samples from the training set, help the model focus more 

on recent data, thereby enhancing its adaptability to new operation scenarios. However, the adaptive capability of 

existing models still requires further improvement. To address these issues, we designed different methods and 

strategies tailored to different operation phases. In the initial phase, when no disruption data is available, we 

present an anomaly detection disruption predictor which can be deployed for the very first shot of a new machine. 

And based on the anomaly detection model, a cross-machine adaptive transfer method is proposed, enabling the 

model to rapidly adapt to the changing operation scenarios of new machine. As operation continues and a limited 

amount of data becomes available, we employ physics-guided transfer learning to adapt models trained on existing 

machines to the new machine, minimizing the demand for new-machine data while maintaining predictive 

performance. Additionally, we incorporate a disruption budget consumption (DBC) framework to quantify the 

impact of disruptions across different operational phases. This allows for risk-aware operation and model 

evaluation, ensuring that disruption prediction systems not only maximize accuracy but also minimize machine 

damage throughout the tokamak’s lifecycle. Together, these methods form a comprehensive, adaptive disruption 

prediction strategy suitable for future large-scale tokamaks. 

2. ADAPTIVE ANOMALY DETECTION DISRUPTION FROM SCRATACH 

In future high-performance tokamaks such as ITER, the plasma energy storage is extremely high. The disruption 

could cause severe damage to the device, making it impossible to collect sufficient disruption data to train 

supervised learning models. To address the challenge of scarce disruption samples in training supervised models, 

the J-TEXT team has studied the anomaly detection-based disruption prediction method that requires only non-

disruptive samples for training[10]. This approach eliminates the need for disruption data, overcoming the issues 

of data imbalance and labeling difficulties inherent in supervised methods. Four anomaly detection predictors are 

developed based on autoencoder (AE), one-class support vector machine (OCSVM), k-nearest neighbor (KNN), 

and angle-based outlier detection (ABOD). These models are tested on both J-TEXT [11] and EAST machines, 

achieving approximately 90% true positive rate (TPR) and below 10% false positive rate (FPR). 

However, the scarcity of available data during the initial operation phase of future new device, especially with no 

data available at the first discharge. This makes it difficult to train and fine-tune models, thereby hindering 
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effective disruption prediction early on. Traditional anomaly detection models cannot use disruption precursor 

samples during training, resulting in significant wastage of data. To reduce the dependency on new machine data 

during cross-tokamak transfer, the J-TEXT team designed an Enhanced Convolutional Autoencoder Anomaly 

Detection (E-CAAD) model (shown in Figure 1)[12]. Equation 1-1 presents the loss function of the E-CAAD 

model, which can minimizes the RCE-1 for disruption precursor samples during training. Therefore, this model 

can be trained using only non-disruptive samples, but also uses disruption precursor samples when they become 

available. This approach not only overcomes the class imbalance problem in supervised models, but also improves 

data efficiency compared to traditional anomaly detection methods, making it more suitable for data-scarce 

scenarios in early-stage operation of new machines. 

 𝑙𝑜𝑠𝑠 =
1

𝑛
∑ [𝑦 ∙ 𝑅𝐶𝐸𝑖

𝑦
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𝑦−1
]𝑛

𝑖=1 ,    𝛽 = {

𝑛𝑁

𝑛𝐷
,   𝑛𝐷 ≥ 1

0, 𝑛𝐷 = 0
  (1) 

Where 𝑛𝑁  and 𝑛𝐷  are the numbers of non-disruption and disruption precursor samples, respectively, in the 

training set. 𝛽 is the dynamic balance parameter of positive and negative samples, automatically calculated by 

the model before each retraining step. 𝛼 is the model's attention parameter to the class of disruption precursor 

samples, set as a hyperparameter before model deployment and experimentally tuned on existing machines to 

search for the optimal hyperparameter. 
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Figure 1 Network structure of convolution autoencoder 

Moreover, differences in machine structure, operational parameters, and control systems among different 

tokamaks make it difficult to directly transfer a high-performance data-driven disruption prediction model trained 

on one machine to another. In future high-parameter tokamak machines, the damage caused by disruptions will 

be extremely severe, necessitating disruption prediction from the first discharge after the main systems are 

operational. Moreover, activities such as wall conditioning, diagnostic upgrades, and operation range exploration 

on new machines will lead to changes in plasma operation scenarios, requiring the prediction model to possess 

adaptive abilities to continuously track these variations. To address these challenges, the J-TEXT team proposed 

a comprehensive strategy based on the E-CAAD predictor[13]. This strategy integrates three key approaches: the 

existing-machine data assistance strategy, the adaptive learning from scratch strategy, and the adaptive alarm 

threshold adjustment strategy. Together, these enable disruption prediction from the first discharge on a new 

machine and allow the predictor to automatically adapt to changes in plasma operation scenarios. 

Existing-machine data assistance strategy: Using J-TEXT as the existing machine and EAST as a simulated 

future device, the J-TEXT team conducted cross-machine transfer experiments with the E-CAAD model. The 

results demonstrate that the E-CAAD model trained on the existing machine can effectively distinguish between 

disruption precursors and non- disruption samples on the new device, confirming the feasibility of disruption 

prediction from the first discharge on a new device.  

Adaptive learning from scratch strategy: Building on the existing-machine data assistance strategy, the team 

further introduced an adaptive learning strategy and an adaptive alarm threshold adjustment strategy based on the 

E-CAAD model. The adaptive learning strategy involves periodically adding the most recent samples to the 

training set and retraining the model, enabling it to learn features of new operation scenarios. This approach allows 

the model to make full use of scarce early-phase data. And the weight function incorporated into the model’s loss 
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function gradually reduces the influence of outdated samples and emphasizes learning from the latest discharges, 

facilitating quick adaptation to changing operation scenarios. 

Adaptive alarm threshold adjustment strategy: This strategy generates a reference threshold based on the 

reconstruction error (RCE) characteristics of historical discharges. It then dynamically scales this threshold 

according to the real-time estimated RCE distribution under new operation scenarios, addressing the challenge of 

threshold selection during data-scarce periods. 

Using the above strategies, cross-machine transfer experiments of the E-CAAD model from J-TEXT to EAST are 

conducted. The results, shown in Figure 2, demonstrate successful disruption prediction from the first discharge 

on the new machine while maintaining the model’s adaptability to dynamic changes in operation scenarios. With 

a 20 ms response time reserved for the Disruption Mitigation System (DMS), the transferred model achieved a 

TPR of 85.88% and an FPR of 6.15%. This performance is comparable to that of models trained with large 

amounts of EAST historical data, proving the effectiveness of the proposed cross-machine transfer method. 

 
Figure 2 Adaptive adjustment of disruption alarm threshold during E-CAAD predictor's adaptive learning process from 

scratch on EAST 

3. PHYSICS GUIDED DEEP TRANSFERABLE DISRUPTION PREDICTOR 

Though the previously introduced method can provide basic protection to the machine, a higher false alarm rate 

than acceptable limits its performance at the beginning of the experiments. Thus we introduce a physics guided 

deep transferable disruption predictor, which is trained with past experiment data with little data from the new 

machine[14]. We focus on finding a balance in the exploration-exploitation dilemma. On the one hand, physics-

based models exploit decades of accumulated experimental knowledge, offering reliable and interpretable rules 

such as density limits or safety factor limits. Yet, this knowledge is incomplete and cannot capture all device-

specific disruption pathways. On the other hand, data-driven approaches can explore hidden correlations and fine-

grained features, but they require sufficient labelled discharges from the target machine, which is an unrealistic 

condition for newly built or early-phase machines. The key question is therefore how to balance the exploitation 

of known physics with the exploration enabled by machine learning, under different data availability regimes. 

To address this, we propose the Physics-guided Domain Adaptation Network (PhyDANet), which integrates 

physics both explicitly and implicitly into the transfer learning process, and combines data exploration with 

domain adaptation techniques. Explicitly, we embed known operational limits and instability proxies into the loss 

function as hard constraints, ensuring the model’s predictions remain physically meaningful even when trained 

with very limited data. Implicitly, we introduce a feature reconstruction task that guides the representation learning 

towards disruption-relevant physical precursors, such as tearing modes or radiation profile anomalies, without 

restricting the model’s ability to discover additional predictive patterns, so that the model generalizes better by 

learning known disruption precursor physics patterns that have been proven on multiple tokamaks. As for domain 

adaptation, both Domain Adversarial Neural Network (DANN) and supervised deep Maximum Mean 

Discrepancy (MMD) are used, for marginal and conditional domain shifts alignment. A diagram of the PhyDANet 

is illustrated in Figure 3. 

The model is validated in J-TEXT as the existing, source tokamak and EAST as the newly-built, target tokamak. 

Two data regimes are set up to simulate the realistic deployment stages, an extremely scarce regime (with one 
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disruptive and one non-disruptive discharge from EAST) and a low-resource regime (with ten disruptive and ten 

non-disruptive discharges from EAST). Numerical experiments are conducted and results are summarized in 

Table 1. 

Table 1 Performance of PhyDANet under different data regimes and physics-guided strategies. 

 Data + Physical Loss +Reconstruction No physics guidance 

Only EAST 
2 shots 0.8357 0.8039 0.7992 

20 shots 0.8902 0.9053 0.8756 

J-TEXT+EAST 

Domain Generalization 

J-TEXT 1021 shots 

EAST 2 shots 
0.8026 0.7762 0.8094 

J-TEXT 1021 shots 

EAST 20 shots 
0.9449 0.9475 0.9212 

In the extremely scarce regime (only two EAST discharges), direct training without physics guidance quickly 

overfits to noise, achieving only marginal predictive capability. By contrast, introducing physical loss constraints 

provides a substantial boost in performance, anchoring predictions to known physical limits such as density and 

safety factor thresholds. Reconstruction is less effective here, as the lack of data limits its ability to guide feature 

learning. This confirms that when exploration through target data is not possible, exploitation of well-established 

physics remains the most reliable path. However, combining with J-TEXT data through domain generalization 

introduces mixed effects. On one hand, the additional data enriches the representation space and provides exposure 

to more disruption patterns. On the other hand, the domain gap between J-TEXT and EAST can mislead the model 

when alignment is insufficient, leading to negative transfer. Physical loss helps mitigate this risk by steering the 

model away from spurious alignments, but performance gains remain modest compared to physics-only guidance. 

This highlights the challenge of leveraging external data under extreme scarcity, where robust physics priors 

remain indispensable. 

 

Figure 3 Diagram of the Physics-guided Domain Adaptation Network (PhyDANet) 

In the low-resource regime (twenty EAST discharges), the balance begins to shift. With more target data available, 

domain adaptation becomes more effective: aligning marginal and conditional distributions across J-TEXT and 

EAST allows the model to explore cross-machine knowledge while adapting to target-specific characteristics. 

Here, reconstruction also begins to play a stronger role, as the increased data variation supports learning detailed, 

disruption-related representations. When combined, representation alignment and reconstruction yield the best 

overall performance, demonstrating that as exploration through target data becomes feasible, fine-grained feature 

exploitation overtakes physics-only constraints as the main driver of predictive gains. 

The results illustrate a dynamic balance: in the absence of sufficient target data, physics priors dominate and 

anchor the model to general physical mechanisms; as more target data become available, domain adaptation and 

representation learning exploit cross-machine knowledge; and with abundant data, the predictor shifts towards 

device-specific exploration of fine-grained features. This layered integration of physics and data makes the 

predictor both more transferable and more robust, offering a pathway for reliable disruption protection from the 

first discharges of future reactors. 

4. DISRUPTION BUDGET GUIDED OPERATION 

Plasma disruption has a significant impact on the life cycle of tokamak machines. Therefore, taking plasma 

disruption as a management objective is an important part of the operation and experimental research of tokamaks. 
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To address the issue of plasma disruption prediction across different operation phase on the tokamak, first of all, 

we will explore the operating range according to the ITER operation plan[15]. Then the core lies in evaluating the 

disruption in different operating phase, studying the impact on the tokamak, and providing the disruption budget 

consumption (DBC) values; Next, we will conduct cross-phase disruption prediction research, incorporate the 

concept of DBC, construct different datasets, and evaluate the performance of the model in different shots from 

different operation phase. However, the performance in the high-parameter operation phase is more important. 

Meanwhile, the total DBC of the dataset also represents the impact of disruption on the machine that the training 

model needs to bear. Finally, we combined DBC with the model prediction results and proposed a new 

performance evaluation method for disruption prediction. Compared with traditional evaluation methods, we can 

evaluate the model from the perspective of the impact of disruption on the machine or the life cycle of the tokamak 

device. The concept of DBC brings a new perspective to rupture prediction.  

DBC is used to quantify the impact of disruptions in different operational phases of a tokamak plasma discharge. 

Since each operational phase has different plasma current (magnetic energy) and thermal energy, the severity of 

a disruption is not the same across phases. DBC measures how much of the “disruption budget” is consumed in 

each operational phase. It’s calculated by plasma current and toroidal filed. For disruption shots, the thermal 

energy and CQ rate should be taken into consideration. 

Then plasma discharges are divided into five classes (class1–class5) based on plasma current ranges. Class 1 and 

2 (low-current phases), all available shots are used in the training set. For class 3 and class 4 (medium-current 

phases), 80% of the shots are used for training and 20% for testing. A unique DBC-based filtering is applied at 

this stage: shots with excessively high DBC values are removed from the training set. The rationale is that high-

DBC shots often represent extreme cases that can reduce the generalization ability of the model if overrepresented 

in training. For class 5, only a limited number of shots (10) are included in the training set, while the majority are 

reserved for testing. This ensures that the evaluation phase reflects the model’s ability to predict disruptions under 

the most demanding plasma conditions. The DBC value is defined as formula (1). Potential DBC is planned budget 

consumption for dataset. For shots disrupted in training set and miss classified in test set, the disruption DBC will 

be used. For shots undisrupted, classified disruption in test set and all class 1 and class2 shots, the DBC is 0. 

𝐷𝐵𝐶 =

{
 
 

 
 

𝐼𝑝 − 𝐼𝑝𝑚𝑖𝑛
𝐼𝑝𝑠𝑡𝑑

+
𝐵𝑡 − 𝐵𝑡𝑚𝑖𝑛
𝐵𝑡𝑠𝑡𝑑

 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐷𝐵𝐶;

𝐼𝑝 − 𝐼𝑝𝑚𝑖𝑛
𝐼𝑝𝑠𝑡𝑑

+
𝐵𝑡 − 𝐵𝑡𝑚𝑖𝑛
𝐵𝑡𝑠𝑡𝑑

+
𝑃𝑡𝑜𝑡 − 𝑃𝑡𝑜𝑡𝑚𝑖𝑛

𝑃𝑡𝑜𝑡𝑠𝑡𝑑
+
𝐶𝑄𝑟𝑎𝑡𝑒 − 𝐶𝑄𝑟𝑎𝑡𝑒𝑚𝑖𝑛

𝐶𝑄𝑟𝑎𝑡𝑒𝑠𝑡𝑑
 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐷𝐵𝐶; 

0 𝑢𝑛𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛;

(2) 

 
Figure 4 Cost curve for model performance on test 3, 4 and 5; model trained without 10 shots from class 5 (blue line) and 

with 10 shots from class 5 (yellow line). 

In the Figure 4 , the model performance is presented. The cost curve integrates the probability of disruption in a 

given class (operational phase). In Figure 4, the probability of positive is the probability of disruption. Different 

operational phases have different disruption rates, and therefore the misclassification costs vary accordingly. To 

enable fair comparison, the cost is normalized across datasets with different disruption rates. This allows the 

model’s performance to be directly compared under varying plasma conditions. The normalized cost is the DBC 

value used by model in test set. For example, model trained by adding limit class 5 shots have 4 false negative in 

the test 5, then the DBC value of these 4 shots will be used and normalized by the whole DBC value of test 5. The 

normalized cost on test 3,4 and 5 are plotted in the cost space along with their probability of positive (probability 
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of disruption). They are connected as the cost curve in cost space. By plotting the normalized cost against the 

disruption probability, the generalization ability of the model across operational ranges can be assessed. A lower 

cost indicates that the model not only predicts disruptions accurately but also balances the trade-off between false 

alarms and missed disruptions in phases with different risks. There are 2 models trained tested on test 3,4 and 5. 

The first one is trained with shots in class 2, 3 and 4. The other one uses the same shots and adding 10 shots from 

class 5 with low DBC value. Including some class 5 disruption data in the training set improves the generalization 

of the model across operational phases, reducing the overall prediction cost and enhancing performance in high-

risk plasma regimes. The cost curve does not only show that the model with class 5 data have better performance 

on test 5 and test 3, but also demonstrate how many percent of DBC it can save comparing with the model without 

class 5 data. 

Compared with the model generalization on 3 test set, the model performance on test 5—measured by both AUC 

and DBC cost—is more critical. A DBC-based filtering strategy is applied: shots with excessively high DBC 

values are removed from the training set. The DBC-based filtering is applied on class 3 and class 4 shots in training 

set. With this strategy, the DBC of train set can be modified depending on removed shots belonging to which 

operation phase. By removing the excessively high DBC shots in class 4 and class 3 separately, evident results 

are shown in Table 2. The shots removed from class 3 are less than shots removed from class 4. But the DBC 

strategy applied on class 4 yields better performance in terms of both AUC and normalized DBC on the test set. 

This means with less training set DBC, the DBC strategy can perform better on test 5. It can be found that when 

15 shots removed from class 3, model has higher AUC than model removing 20 shots from class 4, but the DBC 

cost on test set is higher too. So, DBC cost on test set is as important as the AUC for disruption prediction.  

Table 2 DBC strategy on class 3 and class 4, model performance with AUC, normalize DBC and DBC on train set. 

Train set AUC Normalized DBC(test) DBC(train) 

c1,c2,c3; c5*10 ;c4-20 0.94 0.023 1414.58 

c1,c2,c3; c5*10 ;c4-35 0.97 0.035 1196.4 

c1,c2; c5*10 ;c4,c3-15 0.95 0.025 1583 

c1,c2; c5*10 ;c4,c3-25 0.91 0.043 1502.1 

Table 3 DBC strategy on class 3 and class 4, with similar train set DBC, more test set DBC and lower AUC on class3. 

Train set AUC Normalized DBC(test) DBC(train) 

c1,c2,c3; c5*10 ;c4-20 0.94 0.023 1414.58 

c1,c2; c5*10 ;c4,c3-30 0.92 0.051 1469.3 

Some results are presented in Table 3, when similar train set DBC are used, the model performance differs. The 

strategy that removes 20 shots from class 4 achieves both a higher AUC and a lower DBC cost on the test set 

compared to the strategy applied to class 3. The DBC strategy highlights that more training data does not always 

yield better performance or less test set DBC cost. Instead, carefully selecting training sets based on DBC and 

operation phase can significantly improve prediction in higher operational phases. 

5. CONCLUSION 

This work has systematically addressed the critical challenge of disruption prediction for future tokamak reactors 

by proposing a phased and multi-faceted strategy tailored to the distinct operational phases and data-availability 

scenarios of next-generation machines like ITER. Unlike conventional one-model-fits-all approaches, our 

framework is built on the premise that disruption prediction requirements evolve throughout a tokamak's lifecycle, 

necessitating adaptive, context-aware, and risk-informed solutions. 

In the initial operational phase, where no disruption data exists, the E-CAAD model, combined with a cross-

machine adaptive transfer method, provides a foundational safety net. This transfer method integrates three key 

approaches: the existing-machine data assistance strategy, the adaptive learning from scratch strategy, and the 

adaptive alarm threshold adjustment strategy. Together, these enable disruption prediction from the first discharge 

on a new machine and allow the model to automatically adapt to changes in plasma operation scenarios.. 

Experimental validation on EAST has demonstrated its ability to achieve a high TPR (85.88%) with a manageable 

FPR.15%), proving effective even during the data-scarce initial phase of a new device. 

As operations progress and a limited amount of device-specific data becomes available, PhyDANet offers a 

sophisticated solution to the exploration-exploitation dilemma. By explicitly embedding physical constraints into 

the loss function and implicitly guiding feature learning towards known disruption precursors, PhyDANet 

effectively balances the reliability of established physics with the adaptability of data-driven discovery. The 

results show that physical guidance is crucial under extreme data scarcity, while domain adaptation and feature 
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reconstruction become increasingly powerful as more target machine data is accumulated, ensuring robust 

performance across different data regimes. 

Furthermore, the introduction of the DBC framework provides an essential risk-aware perspective, quantifying 

the impact of disruptions on machine lifetime across different operation phases. This approach allows for more 

meaningful, operationally-grounded model evaluation and training set curation, ensuring that prediction models 

are optimized not just for accuracy, but for minimizing cumulative machine damage—particularly in high-risk, 

high-current operational regimes. 

Collectively, these methods form a cohesive and scalable disruption prediction ecosystem. The anomaly detection 

method ensures safety from the first discharge; physics-guided transfer learning enables knowledge leverage and 

adaptation with minimal new data; and the DBC framework aligns technical performance with long-term 

engineering constraints. This layered strategy provides a structured pathway for the gradual and safe integration 

of machine learning into the operation of future fusion reactors. 

While the methods presented show significant promise in tests conducted on existing machines like J-TEXT and 

EAST, their ultimate validation will come from deployment on future large-scale tokamaks. Future work will 

focus on the real-time implementation of these integrated strategies, their seamless coupling with disruption 

mitigation systems, and extension to a broader range of machine classes and operational scenarios. This research 

lays a necessary methodological foundation for the safe, efficient, and economically viable operation of future 

fusion energy systems. 
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