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Abstract 

The experimentally observed splitting of the geodesic acoustic mode (GAM) spectral peak, which is also referred as 
GAM’s satellites formation, is explained by the nonlinear interaction of GAM with a low-frequency zonal flow in tokamak 
plasma. The stationary toroidal plasma rotation plays a role of the trigger, which turns on the mechanism of the modes coupling. 
The simplified analytical solution of the nonlinear equations is found, which describes the modulation of the GAM envelope 
by a low-frequency zonal flow. In the spectral pattern, this modulation is manifested as the two side-bands near the GAM 
frequency, the difference between which is the doubled frequency of zonal flow. The results are confirmed by the numerical 
integration of the full set of the nonlinear equations, which is free from the simplifying assumptions. 

1. INTRODUCTION 

The geodesic acoustic modes (GAMs) [1] observed in a variety of experiments with toroidal plasma are actively 
studied theoretically and by numerical modelling. However, there is no clear picture of their dynamics. One of 
the problems requiring theoretical interpretation is the observed “double–humping” of the GAM spectrum – the 
presence of two amplitude peaks near the theoretically calculated GAM frequency. In particular, the splitting of 
the GAM’s peak was observed in tokamaks ASDEX Upgrade [2] and DIII-D [3]; the team of the T-10 tokamak 
uses the term “satellite" for this phenomenon [4]. 

In this paper, we exploit the theoretical model proposed in [5], which explains the presence of GAM’s satellites 
in the spectrum of plasma electric potential oscillations by the nonlinear impact of the low-frequency zonal flow 
(ZF) on GAM. In the linear approximation, the low-frequency ZF, like GAM, is one of the electrostatic 
axisymmetric eigenmodes of toroidal plasma oscillations. The finite frequency of ZF is associated with the 
stationary plasma rotation [6] and vanishes in its absence. The interaction of eigenmodes with significantly 
different frequencies leads to the modulation of GAM’s amplitude on the frequency of ZF. This effect manifests 
itself in the form of two side-band harmonics near the GAM standard frequency. Thus, the frequency shift between 
the side-band GAM peaks appears to be equal to the doubled ZF frequency that correlates with the experiment. 

2. MODEL 

To study the GAM-ZF interaction we use the standard system of MHD equations in electrostatic approximation. 
For axisymmetric perturbations, it is written as [5] 
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Equation (1) corresponds to the continuity equation, Eq. (2) is the adiabatic law with the specific heat ratio γ, Eq. 
(3) is the projection of the force balance equation on the direction of magnetic field 𝐁𝐁 = [𝛁𝛁Ψ × ∇φ] + 𝐹𝐹(Ψ)∇φ, 
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and Eq. (4) is the quasineutrality condition averaged over the magnetic surface Ψ. Standard notations for the 
plasma density ρ, pressure 𝑝𝑝, longitudinal velocity 𝑣𝑣||, and electric field potential ϕ(Ψ), which is a function of 
magnetic surface, are used. Coordinate 𝑅𝑅 = 𝑅𝑅𝑎𝑎 + 𝑟𝑟cosθ measures the distance from the geometrical centrum of 
a torus, θ and φ are the poloidal and toroidal angles, correspondingly. The symbol ′ is used to mark the 
perturbations, while the subscript 0 is referred to stationary quantities. The CGS units are used and 𝑐𝑐 is the speed 
of light. 

We assume that in equilibrium plasma rotates in the toroidal direction with angular frequency Ω(Ψ). Due to the 
rotation effect, the equilibrium plasma pressure and density are stratified along the poloidal angle as [7]     
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Here 𝑝̅𝑝0, ρ�0 are the averaged values of equilibrium plasma pressure and density on the magnetic surface, 𝑀𝑀 =
Ω/ω𝑠𝑠 is the toroidal Mach number, and ω𝑠𝑠 = �γ𝑝̅𝑝0/ρ�0/𝑅𝑅𝑎𝑎. An equilibrium with circular concentric magnetic 
surfaces of radius 𝑟𝑟 (Ψ = 𝐵𝐵𝑎𝑎𝑟𝑟2/2𝑞𝑞, 𝐵𝐵𝑎𝑎 is the field on tokamak magnetic axis, 𝑞𝑞 is the safety factor, and 𝐹𝐹 =
𝐵𝐵𝑎𝑎𝑅𝑅𝑎𝑎) is considered and the large aspect ratio approximation, 𝑟𝑟/𝑅𝑅𝑎𝑎 ≪ 1, is used. Parameter α regulates the type 
of plasma dynamical equilibrium. In particular, α = 1 corresponds to equilibrium with isothermal magnetic 
surfaces, at α = γ the entropy is a surface function, and  α → ∞ corresponds to magnetic surfaces of constant 
density.  

The quadratic nonlinearities are collected in the RHSs of Eqs. (1)-(3), while the higher ones are neglected due to 
the large aspect ratio approximation. For the same reason Eq. (4) formally remains linear.  

Substituting an explicit form of 𝐁𝐁 ∙ 𝛁𝛁-operator in Eqs. (1)-(4) and seeking for their solution in the form of first 
harmonics of the poloidal angle we come to the system of coupled ordinary differential equations:   
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Here the dimensionless variables 𝑇𝑇 ≡ 𝑡𝑡ω𝑠𝑠, ρ ≡ ρ′𝑞𝑞𝑅𝑅𝑎𝑎/𝑟𝑟ρ�0, 𝑝𝑝 ≡ 𝑝𝑝′𝑞𝑞𝑅𝑅𝑎𝑎/𝑟𝑟γ𝑝̅𝑝0, 𝑣𝑣 ≡ 𝑞𝑞𝑣𝑣||
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𝑑𝑑Ψ/ωs are introduced; the subscripts c and s refer to cosθ and sinθ-harmonics. 

Equations (5)-(8) constitute a closed system of equations describing the time evolution of radially-localized 
electrostatic axisymmetric perturbations in a conventional tokamak plasma. The numerical analysis of Eqs. (5)-
(8) performed in Ref. [8] shows a variety of oscillation regimes inherent in this system. Here we consider a 
simplified analytical solution of Eqs. (5)-(8) implementing the iterative procedure. In a linear approximation, Eqs. 
(5)-(8) are reduced to the eigenmode equations for GAM and ZF. In the next approximation, we take into account 
the RHSs of Eqs. (5)-(8) using the linear eigenmodes in quadratic terms.  

The proposed approach reduces Eqs. (5)-(8) to only three equations for the functions 𝑝𝑝𝑠𝑠, 𝑝𝑝𝑐𝑐 and 𝐴𝐴.  Differentiating 
equations (6) and (8) by time and excluding the perturbations of ρ and 𝑣𝑣, we obtain 
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The solutions of linearized (with no RHSs) Eqs. (9)-(10) are the modes oscillating with constant amplitudes,  
𝑝𝑝𝑐𝑐,𝑠𝑠 = 𝑝𝑝𝑐𝑐,𝑠𝑠

0 exp(−𝑖𝑖ω𝑇𝑇), 𝐴𝐴 = 𝐴𝐴0exp(−𝑖𝑖ω𝑇𝑇), where frequency ω is measured in units ω𝑠𝑠. Equations (9) determine 
the linear relations between the fluctuations of pressure and electric field for the considered modes 
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while Eq. (10) reduces to the dispersion law with two branches [7]: 
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2 .  

3. THE APPROACH OF WEAK TURBULENCE 

To proceed the further analysis, we decompose the perturbations of plasma pressure and electric field in the 
fluctuations of GAM and ZF types, namely 
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Here and below we neglect the self-action of the modes and consider only the nonlinear dynamics of the GAM 
under the influence of a “given” linear ZF eigenmode of constant amplitude: 𝑝𝑝𝑐𝑐,𝑠𝑠
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which ω = ω𝑍𝑍𝑍𝑍. 
 
To find the nonlinear solution for the GAM, we adhere to the weak turbulence approach [9], which assumes the 
nonlinear interaction of eigenmodes, leading to a slow variation of their amplitudes in time. Following this ansatz, 
we assume that  
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where 𝑝̅𝑝𝑐𝑐,𝑠𝑠 and 𝐴̅𝐴 are the time-dependent amplitudes of the pressure and the electric field in the GAM, whereby 

�
𝜕𝜕𝑝̅𝑝𝑐𝑐,𝑠𝑠

𝜕𝜕𝜕𝜕
� ≪ �ω𝐺𝐺𝐺𝐺𝐺𝐺𝑝̅𝑝𝑐𝑐,𝑠𝑠� ,        �

𝜕𝜕𝐴̅𝐴
𝜕𝜕𝜕𝜕
� ≪ |ω𝐺𝐺𝐺𝐺𝐺𝐺𝐴̅𝐴|.                                                    (14) 

Such a representation is natural to account for the interaction of modes with significantly different frequencies. 

After the substitution of the ansatz (12), (13) with the ordering (14), Eqs. (9)-(10) decompose into the “fast” and 
the “slow” ones. The fast equations coincide with the linear equations and give the GAM eigenfrequency, ω𝐺𝐺𝐺𝐺𝐺𝐺. 
The slow equations describe the change in the GAMs amplitude under the nonlinear effects: 
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To obtain Eqs. (15)-(16), we have used the linear eigenmodes and their inherent relations (11) in the RHSs of Eqs. 
(9)-(10). Now, excluding 𝜕𝜕𝑝̅𝑝𝑠𝑠/𝜕𝜕𝜕𝜕, we come to the equation, which describes the time evolution of the amplitude 
of GAM’s electric field under the influence of ZF:  
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2 − 1/𝑞𝑞2

�. 

To get away from the imaginary in Eq. (17), let’s rewrite its RHS in terms of the time derivative of 𝐴𝐴𝑍𝑍𝑍𝑍 

𝜕𝜕𝐴̅𝐴
𝜕𝜕𝜕𝜕

= −
ν𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺0

ω𝑍𝑍𝑍𝑍

𝜕𝜕𝐴𝐴𝑍𝑍𝑍𝑍

𝜕𝜕𝜕𝜕
. 

Integrating it with constant 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺0 and also choosing the initial phases of GAM and ZF being equal zero: 
𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐴̅𝐴cos(ω𝐺𝐺𝐺𝐺𝐺𝐺𝑇𝑇), 𝐴𝐴𝑍𝑍𝑍𝑍 = 𝐴𝐴𝑍𝑍𝑍𝑍0cos(ω𝑍𝑍𝑍𝑍𝑇𝑇), we finally come to the expression  

𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺0 �1 − 𝜂𝜂
ω𝐺𝐺𝐺𝐺𝐺𝐺

ω𝑍𝑍𝑍𝑍
cos(ω𝑍𝑍𝑍𝑍𝑇𝑇)� cos(ω𝐺𝐺𝐺𝐺𝐺𝐺𝑇𝑇).                                     (18) 

According to (18), the nonlinearity leads to amplitude modulation of GAM by a low frequency ZF. Even for the 
case |𝜂𝜂| ≪ 1, where 𝜂𝜂 = ν𝐴𝐴𝑍𝑍𝑍𝑍0/ω𝐺𝐺𝐺𝐺𝐺𝐺, the big multiplier ω𝐺𝐺𝐺𝐺𝐺𝐺/ω𝑍𝑍𝑍𝑍 ≫ 1 makes possible the existence of the 
regimes with a large depth of modulation.  

The first term in Eq. (18) corresponds to the “initial” GAM, while the second one could be rewritten in the form 
~(cos(ω𝐺𝐺𝐺𝐺𝐺𝐺 + ω𝑍𝑍𝑍𝑍)𝑇𝑇 + cos(ω𝐺𝐺𝐺𝐺𝐺𝐺 − ω𝑍𝑍𝑍𝑍)𝑇𝑇), which clearly indicates the formation of two side-bands on the 
sum and on the difference of GAM and ZF frequencies.  

4. GAMS SATELLITES 

The results of the model are presented below for the following values: GAM linear frequency 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺 = 21  kHz, 
ZF frequency 𝑓𝑓𝑍𝑍𝑍𝑍 = 2 kHz, the ratio of the amplitudes of the ZF to the GAM 𝐴𝐴𝑍𝑍𝑍𝑍0/𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺0 = 0.6 and 𝜂𝜂 = 0.3. 
The electric field fluctuations of GAM and ZF linear modes are shown in Fig. 1 with red and yellow colors 
correspondingly. The GAM nonlinear signal calculated with use of Eq. (18) is shown on the same figure in blue. 
The sufficient modulation of the GAM electric field oscillation is observed with a period of ZF in a half of 
millisecond.  

 
FIG. 1. Time evolution of the electric field fluctuations in liner modes of GAM (red) and ZF (yellow), and in nonlinear 

GAM modified by ZF (blue).  
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Figure 2a shows the corresponding power spectrum of 𝐴𝐴 = 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺 + 𝐴𝐴𝑍𝑍𝑍𝑍.  The punctured circles represent the 
spectrum obtained as a result of Fourier analysis of an "ideal" infinite-length signal. Four frequencies are 
expectedly distinguished: the frequency of ZF 𝑓𝑓𝑍𝑍𝑍𝑍 = 2 kHz, the GAM frequency 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺 = 21 kHz and two side-
bands at 19 and 23 kHz. On the same figure, the solid blue line corresponds to the power spectrum calculated for 
the signal of 1.5 ms finite length with a leakage 0.55. This simulates the conditions of real experiments always 
dealing with a finite signal and limited frequency resolution. Due to the low spectral resolution, the distance 
between the GAM and its side-bands is not well resolved that leads to an integral “two-humped” structure of the 
spectrum. 

 

For comparison with the experiment, we refer to the theses [10] devoted to multicharacteristic study of the plasma 
electric potential fluctuations in the tokamak T-10 by means of a heavy ion beam probing. The experimentally 
measured power spectral density pattern typical for the Ohmic stage of the discharge is shown in Fig. 2b. It 
demonstrates the existence of two peaks near the GAM frequency at 𝑓𝑓~19 kHz and 𝑓𝑓~23 kHz. The additional 
peak in the region of 2 kHz is clearly observed, which, according to the proposed hypothesis, corresponds to ZF. 
The frequency difference of the satellites is equal to the doubled frequency of ZF. A similar spectral pattern with 
noticeable low-frequency activity were observed in other tokamaks, see, e.g., the measurements from the JIPP T-
IIU tokamak [11]. 

5. NUMERICAL MODELING 

To demonstrate the effect of the occurrence of GAM’s satellites as a result of interaction with ZF within the 
“exact” model with no a priory assumption about the structure of the solution, we give examples of the numerical 
solutions of Eqs. (5)-(8). We specify the values of 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺0 and 𝐴𝐴𝑍𝑍𝑍𝑍0 as the initial conditions and calculate the initial 
values of {ρ, 𝑝𝑝, 𝑣𝑣 } using the known linear relations of these fluctuations with 𝐴𝐴. To avoid being limited by 
specific values of plasma parameters, we present the results below in terms of dimensionless variables, namely, 
the frequencies are given in units of ω𝑠𝑠 and the time in 𝑇𝑇𝑠𝑠 = 2𝜋𝜋/ω𝑠𝑠. 

In Fig. 3, the power spectrum of the electric field fluctuations calculated for equilibrium with 𝛼𝛼 = 1 (isothermal 
magnetic surfaces), 𝑀𝑀 = 0.7 (fast toroidal plasma rotation) and 𝑞𝑞 = 3 is shown. For these values of plasma 
parameters, ω𝐺𝐺𝐺𝐺𝐺𝐺 ≈ 2.1, ω𝑍𝑍𝑍𝑍 ≈ 0.05. The quantities 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺0 = 0.3, 𝐴𝐴𝑍𝑍𝑍𝑍0 = 0.1 are used as the initial values. One 
can see that the general structure of the spectrum is very close to that of the simplified model. The GAM spectral 
pattern has a two-humped structure with the distance between the peaks equal to the doubled frequency of ZF. 
The amplitude of the peak related to the frequency of the standard GAM ω𝐺𝐺𝐺𝐺𝐺𝐺  is less than that of the side-bands. 

  
FIG. 2. Power spectrum of the electric field oscillations 𝐴𝐴 = 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺 + 𝐴𝐴𝑍𝑍𝑍𝑍 calculated within the framework of the 

nonlinear GAM-ZF model (18) at 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺/𝑓𝑓𝑍𝑍𝑍𝑍 = 21/2, 𝐴𝐴𝑍𝑍𝑍𝑍0/𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺0 = 0.6, 𝜂𝜂 = 0.3 (a), and spectrum of electric potential 
oscillations in the Ohmic stage of the T-10 tokamak discharge [10] (b). In (a) the circles correspond to the spectrum of 

ideal signal of infinite length, while the line – to the spectrum with finite frequency resolution. The figure (b) is 
reproduced by the permission of the author of Ref. [10]; the author's designations are preserved. 

(a) (b) 



 IAEA-CN-316/3263 
  

 

 
 

Two additional effects are clearly seen, which are not “сaught” by the simplified model of GAM-ZF interaction: 
the appearance of secondary side-bands and the “asymmetry” of satellite peaks. 

 

The results for the equilibrium with the magnetic surfaces of constant density are presented in Fig. 4. The 
peculiarity of this case is that the ZF is linearly unstable. Due to the nonlinearity, the amplitude of the linearly 
unstable ZF saturates at the early stages of the evolution and transforms into resulting oscillations of a finite 
frequency [12]. The further interaction of the saturated ZF mode with GAM is similar to the one for stable case. 

 

6. CONCLUSIONS 

The analytical model of the nonlinear evolution of axisymmetric plasma electric potential fluctuations is proposed. 
The model explains the experimentally observed formation of GAMs satellites by modulation of GAM oscillations 
at the frequency of ZF. The analysis is based on the approach typical for the weak turbulence theory, in which a 

 
FIG. 3.  Power spectrum of the electric field oscillations 𝐴𝐴 calculated by the numerical integration of Eqs. (5)-(8) at  
𝛼𝛼 = 1, 𝑀𝑀 = 0.7,  𝑞𝑞 = 3, 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺0 = 0.3, 𝐴𝐴𝑍𝑍𝑍𝑍0 = 0.1.  The circles correspond to the spectrum calculated on the time 

interval  568𝑇𝑇𝑠𝑠, while the line – to the spectrum with the reduced spectral resolution. 

  

 
FIG. 4.  Power spectrum of the electric field oscillations 𝐴𝐴 calculated by the numerical integration of Eqs. (5)-(8) at  
𝛼𝛼 = 1000, 𝑀𝑀 = 0.5,  𝑞𝑞 = 3, 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺0 = 0.3, 𝐴𝐴𝑍𝑍𝑍𝑍0 = 0.1.  The circles correspond to the spectrum calculated on the time 

interval  1160𝑇𝑇𝑠𝑠, while the line – to the spectrum with the reduced spectral resolution. 
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small nonlinearity leads to a slow variation of the amplitudes of eigenmodes. The periodic change in the GAM 
amplitude is manifested as two side-band harmonics (satellites) with the frequencies equal to the sum and to the 
difference of the GAM and ZF frequencies. It is interesting that the amplitudes of the satellites can exceed the 
amplitude of the original GAM. Note that the solutions obtained for the same equations but by the asymptotic 
expansion technique cannot reproduce the experimentally observed spectral pattern [13], which indicates the 
irrelevance of the small amplitude assumption to the experimental conditions. The performed numerical analysis 
of the self-consistent GAM-ZF dynamics confirms qualitatively the discovered effect, also demonstrating a more 
complex spectral pattern. 
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