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Abstract

In this work, we developed kinetic models based on general fishbone-like dispersion relations. Firstly, by
disregarding ion orbit width and approximating the magnetic geometry as circular, we introduce a simplified model that fully
incorporates neoclassical effects by considering full circulating/trapped particles. Then, by considering the limit of ions
being well-circulating or deeply trapped, the results directly revert to those observed in earlier theoretical studies. Finally, the
accumulation point frequency of Beta-induced Alfvén Eigenmode is calculated in the fluid limit.

1. INTRODUCTION

Alfvén waves and energetic particles, resulted from fusion reaction and auxiliary heating, are crucial to the
performance of Tokamak devices. The theoretical research on low frequency drift Alfvén waves (DAW) is
based on the general fishbone-like dispersion relation (GFLDR)[1] and gyrokinetic theory[2]. Besides
recovering diverse limits of the kinetic magnetohydrodynamic (MHD) energy principle, the GFLDR approach is
also applicable to electromagnetic fluctuations, which exhibit a wide spectrum of spatial and temporal scales
consistent with gyrokinetic descriptions of both the core and supra-thermal plasma components. Formally ,the
GFLDR can be written as

,
f k

i W W    (1)

where  is the generalized inertia, and
f

W and
k

W are, respectively, fluid and kinetic potential energy of

electromagnetic fluctuations. In previous researches, is calculated with fluid and kinetic approaches[3].

In the original theoretical works[4] on DAW, ions considered in the kinetic analysis are assumed to be well
circulating. Later on, the kinetic analysis was extended by including the deeply trapped ions and electrons[3].
Moreover, the researches mentioned above are all based on the s  model in Tokamak plasmas with circular

configuration. However, the neoclassical effects considering full circulating/trapped particles are not included in
previous researches. Especially, the particles near circulating/trapped separatrix are not included in the previous
theoretical models. In order to obtain a better understanding of experimental observations [5] and provide a
more precise kinetic model for theoretical researches, we need to include full neoclassical effects without
assuming well-circulating/deeply-trapped ions.

In this work, we present a kinetic model with s  circular magnetic geometry and small ion orbit width. The

generalized inertia with the modification of neoclassical effects can be calculated with appropriate circular
geometry data. Furthermore, if we assume ions are well circulating or deeply trapped, the results go back to
those of the previous researches[3]. Finally, the generalized inertia and the accumulation point frequency of
Beta-induced Alfvén Eigenmode (BAE) can be calculated.

The rest of the paper is organized as follows. In Section 2, we present our kinetic model including guiding
center motion in circular geometry, kinetic equation in ballooning space and governing equations. Section 3 is
devoted to solve the governing equation in the inertial layer. The results in deep trap particle limit and fluid limit
are presented in Section 4. Finally, the results are summarized in Section 5.
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2. KINETIC MODEL

2.1. GUIDING CENTER MOTION

The guiding center motion of single particles can be given as

  ,
s

v
v v  



.

X b b


 (2)

where v is the velocity parallel to magnetic field, /
s s s

e B m c  is the gyro-frequency of the s-species and b is

the unit vector of magnetic field. In this work, we will only consider the leading order solution without
assuming well circulating and deeply trapped particles. For the circular up-down symmetric configuration, the

magnetic field  
0
1 cosB B    , where

2

0
/ ~r R  is the inverse aspect ratio, r is the minor radius, 0R is

the major radius and is the small parameter. The guiding center motion is governed by[6]
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where  02 1 /v B B    ,
0
/B   , 2v   , 1   is the sign of parallel velocity,  is the particle

energy per mass, is the poloidal angle, is the toroidal angle and q is the safety factor.

2.2. GYROKINETIC EQUATION IN THE BALLOONING SPACE

Before going to ballooning space, we start the analysis from the gyro-kinetic equation in original space. The
perturbed particle distribution function can be written as[2]

 0 0
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,k ks

iL iL

s Ls s

s s

F QFe
f J k e K e

m
    




  


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      
(3)

where  is perturbed electric potential,  22 2k k   k b ,  is related to parallel vector potential

fluctuation A  with   ,A i c   b 0J is the 0th Bessel function,
0

/
Ls s s

m cv e B


 is the the Larmor

radius,  1

0 0s s s
QF F        k b , and   

0
/

ks s s
L m c e B  k b v . And the non-adiabatic part sK

obeys the gyro-kinetic equation

 

 
0 0 0 1

,

s

d

s

s

r

s

i r K

ve
i QF J J J B
m k c

    


   






       

   
   

        


 

(4)

where 1J is the 1st Bessel function,    2
0 /ds sB v      k b κ ,  is the curvature of magnetic field line

and B  is the perturbed parallel magnetic field. By considering the ballooning representation, we have[1]

   
,

ˆ, , .i nq min im in im
m n

m m

f e e f e e e fd            (5)

Then the gyro-kinetic equation can be rewritten as
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where    2 2
1 0cos sin 2ds snq v v s rR       in the ballooning representation. For the simplicity of

notation, ds denotes the drift frequency in ballooning space. Before further analysis, it should be noted that the



Yang Li

3

analysis in this work will be carried out in the inertial layer. Thus, we have two scales,
i.e. 1 1/2

1 ~ ~    and 0 ~ 1 . With the separated scales, the related wave numbers can be given

as /k nq r  , ˆk k  and 2 2
1

ˆ 1 s  in the inertial layer. In the original space , ,  and r are all periodic
functions in . Since periodic functions in are represented as periodic function in , all the periodic functions
in original space, can be treated as functions only in the short scale 0 , which indicates that the particle orbits

are represented on the scale of 0 . In order to study the responses of trapped and circulating particles, the

canonical angle can be introduced as[7]

0 0 ,c b

d 
 





   (7)

where the bouncing frequency
.

02 / /b d      
  .The bouncing frequency for circulating particles

with 0 1    can be obtained as[6]
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where  K  is the elliptic integral of the first kind,  2 1 1 2        , and 1  for circulating particles.

For trapped particles with1 1     , the bouncing frequency is

 1

0

2
,

4b

v
K

qR

  


where 0 1  for trapped particles. The bouncing averaged drift frequency for trapped particles in intertial

region can be calculated as

   
 0

2 2 1 ,ds
s

Ek E

R K
 

 


 
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   
where  E  is the complete elliptic integrals of the kinds.

2.3. GOVERNING EQUATIONS

In order to obtain the dispersion relation for LFDAW, the quasi-neutrality condition and vorticity equation are
adopted as governing equations. The quasi-neutrality equation can be cast as,

  *
0

,

1 ,pii i i
i s

s i ei e i

e n en en
b J K

T T T


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   
       

  
 (8)

where  2 /B v dEd


      is the integration of the velocity space. And the vorticity equation

is obtained from the parallel Ampère’s law and gyro-kinetic equation, which can be given as[4]
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where / 4A i iv B n m is the Alfvén velocity, 2
0R q    ,  is the ratio of plasma energy over

magnetic field energy,   1cos sing s    ,      * / / /ps s s s s s scT e B n n c e B T     k b k b , iT is

the ion temperature and in is the ion density.

3. ANALYTICAL RESULTS

3.1. ORDERINGS

In the singular layer with 1
1 ~   , we have the orderings *~ ~ ~di Pi bi    for circulating ions

and ~ ~ ~ ~de di bi be     for trapped ions and electrons. Moreover, the Larmor radius of ions is assumed to
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be small, i.e. ~tik   , in singular layer, where
0

/
sti t si

m cv e B  . The 0th order kinetic equations for

circulating ions, trapped ions and trapped electrons can be written as
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Here we have re-defined    ˆ, ,       . The 0-th order quasi-neutrality condition and vorticity equation

can be given as
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where the average of 0 has been taken, 0 0i i icirc tr
N F F  ,  
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  for circulating particles, i eT T  and 2bs bs   . The 1st kinetic

equation for circulating ions can be given as
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By assuming a posteriori that  0
0sins       [3], we have the 1st order quasi-neutrality and vorticity

equations are
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where t is the thermal energy of ions per mass,   1
0, sin sin c cL d      for trapped ions

and   1
0, , sin sin c cM d       for passing ions. In general, 0sin can couple with the harmonics of c to

any order. However, the analysis in Subsection 3.2 below can rule out most of the harmonic couplings. And the

1st order vector potential is incorporated into  0 and hence can be taken as zero. Provided that the governing
equations are solved order by order, the 2nd order vorticity equation can give the GFLDR, which is
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Now we have all the equations need to be solved. Before conducting the analytical calculation, some useful
symmetry analysis should be carried out.

3.2. UP-DOWN SYMMETRY AND PSEUDO-ORTHOGONAL RELATIONS

Since the magnetic configuration is up-down symmetric (    ), the canonical angle can be defined piece-
wisely. First, we consider the circulating particles with 1  . For 00    ,
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∮
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where  ,K x  is the incomplete elliptic integral for the first kind. And for 0 2    ,

   0 0, 1 2 2 .c circ         

For 1   , since the orbit width is neglected, we have the reflection formula

   0 0, 1 2 , 1 .c c          

For trapped particles, the canonical angle is obtained piece wisely as
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where    sin sin / 2 / sin / 2bx   . With the up-down symmetry, the definition of canonical angle along the

rest parts of the orbit can be obtained as
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


With the definitions for c and up-down symmetry relations above, by integrating along the orbit piece-wisely,

the pseudo-orthogonality relation in bouncing average for both trapped and circulating particles can be given as

0 0sin cos cos sin 0,c c c cm l d m l d         (15)

wherem and l are integers. Moreover, for trapped particles and even l , we have

 0 0 0sin sin cos cos 1 0.c c cm l d m l d            (16)

As shown above, the Fourier components in 0 and c , by averaging over c , have the orthogonality similar to

the Fourier components only in 0 . Thus, the higher harmonic couplings of c with 0sin can be ruled out by

pseudo-orthogonality together with the numerical results in Subsection 4.1.

3.3. ANALYTICAL SOLUTION

The 0th order solution of the gyro-kinetic equation can be given as
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

where the terms proportional to cos c is irrelevant due to the pseudo-orthogonal relations. The 0th order quasi-

neutrality equation gives

   0 01

2

,
D

D
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1

1
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And the solution to the1st order gyro-kinetic equation is

       1 0
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


And the 1st quasi-neutrality equation gives
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Finally, the second order vorticity equation is obtained as
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where 2 2 2 2
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Now the inertia term 2 contains the corrections from the contribution of particles near passing trapped
separatrix. As shown in the results above, the particles near the barely passing trapped separatrix can modify the
inertia term. By taking the equilibrium distribution function as Maxwellian, the generalized inertia can be
represented by the plasma dispersion relations.

4. LIMITING CASES

4.1. DEEP TRAP LIMIT

In this subsection, we will analyze the weight functions, i.e. M and L to demonstrate how the results are related
to those in previous researches[3]. If the circulating particles are approximately taken to be well circulating,
i.e. 1  , the canonical angle is then

 0 1, 02 ., 1c         (18)

And the parallel velocity v can be treated approximately independent of 0 . Then the weight term M can be

given as

 
2

0 0 00

1
1 sin sin 1.M d


   


  (19)

And the velocity space integral is
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0 0
4 .

2 1circ
d d 


 

   
   (20)

For the trapped particles, by assuming trapped particles are deeply trapped, we

have 2b  , 0 sinb c   , 0 cosb b cv qR    and 0 0/b B qR   . Then the weight term  L and the velocity

space integral
tr

 can be given as

/ 2

00

4
sin sin ,c c bL d


   


   (21)

and
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  1/2

0
4 .

tr
d



     (22)

Here the approximation 0sin sinb c   has been used. As shown in Fig. 1, 1M  except for the circulating

ions near circulating/trapped separatrix, which is illustrated by comparing with the higher coupling weight

function 1
0sin sin 2 c cM d      . As shown in Fig. 1, 0c  is a good approximation for the majority of

circulating ions. And the demonstration that the higher harmonic of c can be ruled out is now complete. In Fig.1,

it is illustrated that the value of / bL  approaches 1 for deeply trapped particles. Moreover, the value of the L

function peaks at the medium trapped region, which indicates that the contribution from the medium trapped
particles is bigger than that of the deeply trapped particles. Finally, with the analysis above, the results in
Subsection 3.3 directly go back the previous results with well-circulating and deeply trapped particles[3]. As
shown in Fig. 1, the weight functions L and M of the particles near passing/trapped boundary and deeply
trapped region is small. Thus, the well passing and medium trapped particles contribute most to the neoclassical
corrections.

Figure 1. Value of weight function versus pitch angle variable λ for ϵ=0.1.

4.2. FLUID LIMIT

By taking the fluid limit * ~ ~ps di bi    , we have    0 0   and
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The generalized inertia can be given as
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(23)

where 0ti tiv qR  and 0/A Av qR  . By taking 2 0  , the BAE frequency can be calculated numerically as in

Fig. 2. And an interpolate formula can be given as
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1.7 0.2 .

4BAE tiq        (24)

As shown in Fig. 2, the neoclassical effects can lower the frequency of BAE. And this correction is absent if we
only consider the deeply trapped and well passing particles. In experiments, the frequency of BAE is detected
along radial coordinate. With the Eq. (24), the modified BAE frequency in our work can be easily verified by
comparing the spectrum data from experiments.

Figure 2. Neoclassical correction on the frequency of BAE for τ≈1.

5. SUMMARY

In this work, a kinetic model with full neoclassical effects is developed. And novel inspections on the symmetry
of particle orbits are introduced to make the analytical calculation accessible. The results can go back to those in
the previous researches by taking the corresponding limit. Moreover, it is shown that the neoclassical effects can
lower the frequency of BAE, which is absent in the deep trap limit calculation in the previous research.
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