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Abstract

In the global gyrokinetic solution, symmetry breaking leads to the generation of plasma current and intrinsic ion ro-
tation. This paper introduces the global gyrokinetic code TRIMEG and examines the electromagnetic (EM) effects on the
current generation and the parallel momentum transport in tokamak plasmas, taking into account global symmetry-breaking
mechanisms such as equilibrium profile variation, linear global mode structure, and nonlinear evolution. The results demon-
strate that magnetic effects contribute significantly to current generation, underscoring the importance of an electromagnetic
model in predicting turbulence-driven currents. In addition to the fine-structure current reported previously, a large-scale cur-
rent is also observed. With respect to ion momentum transport, the equilibrium profile is shown to affect both the magnitude
and the shape of the ion rotation. Global nonlinear electromagnetic gyrokinetic simulations are applied to predict the intrinsic
toroidal rotation profiles of an ASDEX Upgrade (AUG) H-mode plasma with ECRH only. A nonlinear simulation based on
AUG experimental profiles, with reduced normalized device size, directly produces an intrinsically generated parallel velocity
profile. The simulated velocity profile attains a magnitude comparable to the experimental measurement in the region where
the instability is excited.

1. INTRODUCTION

Symmetry breaking in the global gyrokinetic solution modifies the plasma current density profile and plays a
critical role in the development of intrinsic ion rotation [1, 2, 3]. Current generation in turn influences the MHD
equilibrium and associated instabilities. Plasma rotation can suppress microinstabilities and prevent MHD mode
locking, thereby improving confinement and stability. In ITER, the external torque from neutral beam injection
(NBI) is expected to be insufficient to drive strong toroidal rotation, making intrinsic sources of rotation partic-
ularly important. Similarly, current DEMO designs and the early operational phase of ITER will largely rely on
intrinsic rotation in the absence of NBI. Most previous studies of intrinsic rotation have been carried out in the
electrostatic limit, neglecting electromagnetic effects.

The turbulence-driven current has been investigated theoretically [4, 5, 6]. Previous gyrokinetic simulations
of intrinsic rotation have primarily relied on electrostatic models and thus focused on electrostatic modes such as
the ion temperature gradient mode (ITG) and the trapped electron mode (TEM) [7, 8, 9]. For electron momentum
transport (current generation), gyrokinetic simulations have identified both large-scale and fine-scale structures in
the radial current profile, indicating that turbulence-driven current is not negligible compared with the bootstrap
current [10, 11, 12]. Moreover, the magnetic contribution to the parallel momentum flux can be significant even
for ion-temperature-gradient modes [13]. In the symmetry breaking studies related to energetic particles, the
electromagnetic effect is the starting point of the simulations of Alfvèn eigenmodes [14, 15].

In this work, the electromagnetic gyrokinetic code TRIMEG is employed to simulate ion rotation and current
generation. Section 2 describes the models and equations used in TRIMEG, Section 3 presents the simulation
results for current generation and ion rotation, and Section 4 provides the conclusions.
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2. MODELS AND EQUATIONS

2.1. The gyrokinetic electromagnetic model in TRIMEG code

The TRIangular MEsh-based Gyrokinetic code (TRIMEG) has been originally based on unstructured triangular
meshes and C0 linear finite elements [16]. It has been extended to the high-order C1 finite element method in
triangular meshes recently [17]. Meanwhile, the structured mesh version has also been developed for studies of
numerical methods such as the implicit scheme [18], the piecewise field-aligned finite element method [19], and
physics models such as the mixed-full f -δf method for energetic particle and Alfvénic physics [20]. The recent
studies of Alfvén waves and micro-instabilities using TRIMEG-GKX has been summarized previously [21]. In
this work, we use the structured mesh version TRIMEG-GKX to study the momentum transport of the electrons
and ions. Specifically, the mixed variable-pullback scheme has been adopted, which is crucial for electromagnetic
simulations in this work.

Using the mixed variable scheme, the parallel component of the perturbed magnetic potential δA∥ is decom-
posed into a symplectic part δAs

∥ and a Hamiltonian part δAh
∥[22], namely, δA∥ = δAs

∥ + δAh
∥ . The gyrocenter

equations of motion are as follows [22, 23, 24, 25, 26],

Ṙ0 = u∥b
∗
0 +

mµ

qB∗
∥
b×∇B , u̇∥,0 = −µb∗0 · ∇B , (1)

δṘ =
b

B∗
∥
×∇⟨δΦ− u∥δA∥⟩ −

qs
ms

⟨δAh
∥⟩b

∗ , (2)

δu̇∥ = − qs
ms

(
b∗ · ∇⟨δΦ− u∥δA

h
∥⟩+ ∂t⟨δAs

∥⟩
)
− µ

B∗
∥
b×∇B · ∇⟨δAs

∥⟩ , (3)

where u∥ = v∥ + (qs/ms)⟨δAh
∥⟩, v∥ is the parallel velocity, qs and ms are the charge and mass of species s,

respectively, the subscript “s” represents the different particle species ( in the following, thermal ions and electrons
are kept), and ⟨. . .⟩ indicates the gyro average, δΦ is the perturbed electrical potential, the magnetic moment
µ = v2⊥/(2B), b∗ = b∗0 + ∇⟨δAs

∥⟩ × b/B∗
∥ , ⟨. . .⟩ denotes the gyro average, b∗0 = b + (ms/qs)u∥∇ × b/B∗

∥ ,
b = B/B, B∗

∥ = B + (ms/qs)u∥b · (∇× b), B is the equilibrium magnetic field.
The perturbed distribution function is solved by following the marker trajectory,

dδf

dt
=

∂

∂t
δf + Ṙ · ∇δf + u̇∥

∂

∂u̇∥
δf = −δṘ · ∇f0 − δu̇∥

∂

∂u∥
f0 , (4)

where Ṙ = Ṙ0 + δṘ, u̇∥ = u̇∥,0 + δu̇∥, the equilibrium distribution f0 is the steady state solution that satisfies
df0/dt|0 = 0 along the unperturbed trajectory, and it is typically assumed to be the Maxwellian distribution
function when the neoclassical physics is not considered in toroidally confined plasmas.

The linearized quasi-neutrality equation with the long-wavelength approximation is as follows,

−∇ · (G∇⊥δΦ) =
∑
s

qsδns,v ≡ δQv , G =
∑
s

qsn0s

Bωcs
(5)

where the gyrocenter density δns,v is calculated using δfs(R, v∥, µ) (denoted as δfs,v), namely, δns,v(x) =∫
d6z δfs,vδ(R + ρ − x). Here, x and R denote the particle position vector and gyrocenter position vector,

respectively, and ρ represents the Larmor radius vector. In Eq. (5), ωcs is the cyclotron frequency of species s.
δfs,v is obtained from δfs,u according to the general form of the nonlinear pullback scheme [23] fs,v(v∥) =

fs,u(v∥ + (qs/ms)⟨δAh
∥⟩).

Ampère’s law

−∇2
⊥δA∥ = µ0

∑
s

qs

∫
d6z v∥δfs,vδ(R+ ρ− x) ≡ δjv (6)

is expressed as

−∇2
⊥δA

h
∥ +

∑
s

µ0
q2s
Ts

∫
d6z v2∥f0s⟨δA

h
∥⟩δ(R+ ρ− x)

= ∇2
⊥δA

s
∥ + µ0

∑
s

qs

∫
d6z v∥δfs,u(u∥)δ(R+ ρ− x) . (7)
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The ideal Ohm’s law is adopted to determine δAs
∥,

∂tδA
s
∥ + ∂∥δΦ = 0 , (8)

where the parallel derivative is defined as ∂∥ = b · ∇, b = B/B as already defined following Eq. (3).
At the end of each step, the solution is pulled back from (δfs,u, u∥) to (δfs,v, v∥),

δfnew
s,u = δfold

s,u +
qs

〈
δAh,old

∥

〉
ms

∂f0s
∂v∥

Maxwellian−−−−−−→
f0s=fold

M

δfold
s,u −

v∥

Ts
qs

〈
δAh,old

∥

〉
f0s , (9)

unew
∥ = uold

∥ − qs
ms

⟨δAh,old
∥ ⟩ , δAs,new

∥ = δAs,old
∥ + δAh,old

∥ , δAh,new
∥ = 0 . (10)

A 4th-order Runge-Kutta time integrator is implemented in the TRIMEG code, and the pullback operation is
applied at the end of each full time step.

2.2. The diagnoses of the parallel momentum fluxes

The flux diagnostics of particle, heat, and parallel momentum have been implemented for all particle species,
including both electrons and ions. Specifically, the parallel momentum, the fluxes due to the scalar potential, and
the parallel component of the vector potential are separated as follows

Πδϕ =

〈∫
d3v

b

B
× ⟨∇δϕ⟩δfvv∥

〉
F

, ΠδA∥ =

〈∫
d3v

b

B
× ⟨∇δA∥⟩δfvv2∥

〉
F

, (11)

where δfv is the perturbed distribution in (R, v∥, µ), ⟨· · · ⟩ denotes the gyro-average and ⟨. . .⟩F denotes the flux
surface average. The current and the parallel velocity are calculated as follows,

δj∥,e = −e

〈∫
d3vδfv,ev∥

〉
F

, V∥ =

〈
1

ni

∫
d3vδfv,iv∥

〉
F

, (12)

where ni is the ion density. Since the perturbed distribution function is pulled back to v∥ space at the end of
each step in Eq. (9), δfv is always close to δfu and δfv = δfu after pullback. The flux contributions from the
electrostatic scalar potential and the parallel component of the vector potential are analyzed separately to quantify
their respective roles. Note that while the contribution from δϕ and δA∥ is separated as shown in Eq. (11), the
perturbed distribution implicitly depends on δϕ and δA∥ and can not be explicitly separated from the results.

3. RESULTS AND ANALYSES

We perform single-n and multi-n simulations. The Maxwellian distribution markers are initially loaded, and δf
is initialized with noise. The evolution of the distribution function f = f0 + δf is represented by the perturbed
part δf while the analytical expression of f0 does not change in the simulation. In both single-n and multi-n
simulations, the n = 0 component in phase space is free to evolve, and thus, even in the single-n simulations, the
profile flattening can occur to saturate the instability.

3.1. Current generation in the Cyclone-like case

3.1.1. Parameters

We consider an ad hoc equilibrium with circular magnetic surfaces, similar to that used in the previous gyrokinetic
simulations [11, 13]. The parameters are similar to those of the Cyclone base case with a/R0 = 0.36, R0 =
1.67 m. The plasma temperature is tuned to study the cases with different orbit width by shifting the normalized
device size a/ρref , where ρref = mNvN/(eBref) is the reference Larmor radius using the proton mass mN , the
velocity unit vN =

√
2Tref/mN , the temperature unit Tref is determined by ρref and βref (defined later), and

Bref = 2 T. For the economical Cyclone case, we choose ρref = 0.0066844 m, and thus the ratio a/ρref ≈ 90
(the nominal value is 180). In addition to ρref , we choose another parameter βref = µ0nrefmNv2N/B2

ref so that
nref and Tref are determined, and nref and Tref correspond to the values at the reference radius. The details of
the normalization can be found in our previous work [20]. The mass ratio is mi/me = 100. Our future work
will focus on more realistic simulations, whereas this work concentrates on studying the basic properties while
considering electromagnetic effects. Two cases with βref = 0.005, 0.02 are simulated with the n = 10 Fourier
filter in the field solver. The ITG mode and KBM are dominant for βref = 0.005, 0.02, respectively. Figure 1
demonstrates the time evolution of the total field energy that is estimated as Efield = −

∫
dV (δϕδQv + δA∥δjv)

where δQv and δjv are defined in Eqs. (5) and (6). The parallel momentum and the fluxes are calculated using
the data in the nonlinear stage with time average and analyzed in the following section.

3
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FIG. 1. The time evolution of the total field energy for βref = 0.005, 0.02, n = 10.

3.1.2. Structures of the perturbed density and current

The nonlinear simulations have been performed for the n = 10 toroidal harmonic. Typical 2D structures of the
perturbed density and current are shown in Fig. 2 for βref = 0.005. The tilting of the 2D mode structure is
visible, indicating the symmetry-breaking effect on the momentum transport [2, 27, 28]. In the linear stage, the
nonlinear terms are negligible, and the instability grows exponentially. Once the mode amplitude exceeds a critical
threshold, nonlinear effects become significant, driving the instability into its nonlinear stage, where it saturates
due to the E×B and parallel nonlinear terms. Specifically, in the single-n simulations, we only apply the toroidal
Fourier filter when solving the field variables δϕ and δA∥, but the n = 0 component can still evolve. The so-called
E×B nonlinearity δv ·∇δf and the parallel nonlinearity δv̇∥∂δf/∂v∥ in Eq. (4) can balance the radial gradient of
f0 and lead to the saturation of the instability. Since these are single-n simulations, the mode structure is coherent
even in the nonlinear stage. From the linear stage to the nonlinear stage, the mode structure is broadened while
the tilting angle remains finite. The right frame demonstrated that the radial widths of the density perturbation
and the current perturbation is larger in the nonlinear stage than in the linear stage. In the radial profile of the
density perturbation, the fine structures are also significant. Note that the zonal component is not included. Thus,
the shearing effect of the zonal flow is not included since the purpose is merely to identify the properties of the
current driven by the single-n harmonic.

FIG. 2. The structure of the perturbed density (upper) and current (lower) for βref = 0.005, n = 10. The right
column is the radial profile calculated at ϕ = 0 according to Ȳ (ri) ≡

√∑
j=1,Nθ

Y 2(ri, θj)/Nθ, where Nθ is
the poloidal grid number.
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3.1.3. Multi-scale turbulence-driven current

The large-scale and fine-scale of the turbulence-driven current have been reported previously in the electrostatic
limit or low β plasma [12, 10, 13]. Without including the n = 0 component, the ITG/TEM instability is saturated
due to the E × B nonlinearity δv · ∇δf and the parallel nonlinearity δv̇∥∂δf/∂v∥ in Eq. (4) that locally flattens
the instability drive (the temperature and/or density gradient in the radial direction). Meanwhile, since the Fourier
filter is applied only when calculating the perturbed density and current for solving the quasi-neutrality equation
and the parallel Ampère’s law, the evolution of δnn=0 and δjn=0 is not suppressed and can be viewed as a quasi-
linear estimate. While the accurate magnitude relies on a more consistent simulation, the single-n simulation can
be used to identify the multi-scale structures. The n = 0, m = 0 component of the turbulence-driven current is
shown in Fig. 3. The fine structure of δjn=0,m=0 is demonstrated by the red solid lines. By applying smoothing
with a radial span of ∼ 0.17a, the large-scale structure of the current is obtained, as indicated by the black dashed
line. The βref = 0.02 case is also simulated in the right frame. The two-scale structure shows differences from
that of the βref = 0.005 case, since the negative large-scale current also appears in the inner region, which can be
related to the different dependence of symmetry breaking on various parameters and the mode type.
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FIG. 3. The radial structure of the turbulence driven n = 0,m = 0 current for βref = 0.005 (left) and βref = 0.02
(right).

3.1.4. Electromagnetic effects

The parallel momentum flux is calculated according to Eqs. (11) and normalized to the Gyro Bohm scaling. As
shown in Fig. 4, for βref = 0.005, the electron parallel momentum flux is mainly contributed by Πδϕ. For the
βref = 0.02 case, the magnitude of ΠδA increases and is similar to that of Πδϕ near r/a = 0.4, suggesting that
the electromagnetic effect is important for evaluating the electron parallel momentum flux.
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FIG. 4. The radial structure of the electron parallel momentum flux (Eq. 11) for βref = 0.005 (left) and βref = 0.02
(right).
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3.2. Parallel rotation generation in the AUG-like case

3.2.1. Parameters

The simulation of ion rotation is based on the parameters of the AUG discharge # 26170 at ∼ 3.86 s [3]. It is an H-
mode, with about 2.2 MW of ECRH heating power, at 2.5 T and 0.6 MA. The ad hoc equilibrium with concentric
circular flux surfaces is adopted with R0 = 1.7 m, a = 0.62 m, Bref = 2.5 T. The safety q(ρ) is matched to the
experimental profile q̄(ρ) = q0 + q4ρ

4, where q0 = 1.1, q2 = 0, q4 = 48.0498, ρ =
√
(R−R0)2 + (Z − Z0)2,

ρ ∈ [0, a] and in the ad hoc equilibrium model, q(ρ) = q̄/
√
1− (ρ/R0)2. The density and temperature profiles

are from the experimental measurement, as shown in Fig. 5. While our ultimate goal is to consider realistic
parameters, in this work, we choose ρref = 0.0066844 m instead of the nominal value ρref = 0.0018278 m
due to the limitation on computational resources. From our previous numerical studies, the computational cost is
proportional to 1/ρ3ref (Eq. 97 in [29]) and thus, the increased ρref reduces the computational cost significantly
to make it affordable. In addition, as ρref decreases, the n spectrum shifts upward and the net flux decreases,
requiring longer-time simulations. The electrostatic model is adopted since the electromagnetic effect is expected
to play a minor role in ion rotation. Nevertheless, the following studies aim to demonstrate the basic properties of
the simulation and a more accurate evaluation using realistic parameters merits more effort in the future.
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FIG. 5. The radial profile of the safety factor (left) and temperature and density (right) of the AUG case.

3.2.2. Multi-n nonlinear simulations

The time evolution of the total field energy is shown in the upper frame of Fig. 6. The piecewise field-aligned finite
element method has been used to reduce the grid number in the direction along the magnetic field [19]. No Fourier
filter has been applied in the simulation. The most unstable mode appears from the noise and becomes dominant
in the linear stage. The time evolution of the total field energy (top left) exhibits the exponential growth of the
instability followed by its saturation. The 2D structures of the density perturbation are shown in the lower frame.
The linear mode structure (lower left) is much narrower than that in the nonlinear stage (lower right). While the
2D mode structure in the nonliner stage is not turbulent enough, due to the increased ρref/a in this simulation, the
broadening of the mode structure in the radial direction is observed (top right). More detailed studies related to
the turbulence spreading relies on more realistic simulation using small ρref/a and dedicated analyses of the zonal
flow in future, with necessary comparison with previous work [30].

3.2.3. Profile generation of toroidal rotation

Previous work solves a transport equation by extracting the predicted momentum flux from the gyrokinetic simu-
lation [30]. Electrostatic global simulations analyzed the symmetry breaking mechanisms and the rotation profile
generation for AUG [31]. In this work, the flow profile is simulated directly by the nonlinear gyrokinetic simula-
tion and compared with the experimental measurements. The general feature of a hollow rotation profile observed
in ASDEX Upgrade (ECRH H-modes) is reproduced by nonlinear simulations. The multi-nonlinear simulation
is run with global effects such as self-consistent background profile variation represented by δf including its
n = 0,m = 0 component.

The evolution of the ion parallel momentum flux is shown in Fig. 7 (left), where the radial broadening of
structure is visible from the linear to the nonlinear stage. The generation of the rotation profile is closely linked to
turbulence broadening in the radial direction, since the rotation profile varies across the entire radial domain from
the experimental observation but the linear mode structure mainly accumulates near r/a ∼ 0.4. From the ion
toroidal angular momentum transport equation, ∂t(mini⟨RVϕ⟩F )+ ⟨∇ ·Γϕ⟩F = S, where Γϕ is the total toroidal
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FIG. 6. The time evolution of the total field energy (upper left), the radial structure (top right) and the 2D structures
(lower) of the density perturbation at t = (20, 90)RN/vN for the AUG case. The radial structure is calculated
with the same way as Fig. 2. The unit of δΦ is mNv

2
N/e = 2 kV. At saturation, δΦ ∼ 0.05, corresponding to

∼ 100 V. Simulations with smaller ρref/a are expected to yield lower magnitude of δΦ .

angular momentum flux and mainly contributed by the the parallel ion momentum flux, and S is the momentum
source such as that arising from neutral beam injection, which is set to zero in simulations. In the middle frame,
near the axis, the positive ⟨∇ · Γϕ⟩F corresponds to a negative parallel velocity; while in the outer region, vice
versa. The parallel velocity does not keep increasing in the nonlinear stage since other mechanisms such as the
turbulent diffusion can balance the residual stress. The parallel velocity is calculated in the nonlinear stage by
time-average during t ∈ [60, 70]RN/vN as shown in Fig. 7 (right). In the region where the instability is strong
(0.2 ≪ r/a ≪ 0.6), the simulation result follows the trend of the experimental measurement, while near the
inner and outer boundary, more realistic simulations are needed, taking into account more realistic ρ∗ values and
advanced boundary treatment.
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FIG. 7. The parallel ion momentum flux (left), the parallel velocity (middle) and radial profile of the rotation from
the simulation and the experimental measurement (right) of the AUG case.

4. SUMMARY

The new electromagnetic global gyrokinetic code TRIMEG enables the study of turbulence-driven ion momen-
tum transport and current generation on an equal footing. For ITG/KBM-driven current, multi-scale structures
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are identified. In the high-β(2%) case, the electromagnetic correction in fine-scale flux is significant compared
with that driven by the electrostatic scalar potential. The general feature of a hollow ion toroidal rotation profile
observed in ECRH H-modes in ASDEX Upgrade has been reproduced by global nonlinear electromagnetic gy-
rokinetic simulations. This work demonstrates that turbulence can modify the current and rotation profiles, thereby
affecting plasma confinement. Future work aims to perform simulations at reactor-relevant values of a/ρi. The
neoclassical effect with finite collision can be also important and merits more effort in the future.
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