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Abstract

In this work, we extend the geometric Particle in Cell framework on dual grids to a gauge-free drift-kinetic Vlasov–
Maxwell model and its coupling with the fully kinetic model. We derive a discrete action principle on dual grids for our
drift-kinetic model, such that the dynamical system involves only the electric and magnetic fields and not the potentials as most
drift-kinetic and gyrokinetic models do. This yields a macroscopic Maxwell equation including polarization and magnetization
terms that can be coupled straightforwardly with a fully kinetic model.

1. INTRODUCTION

Most current gyrokinetic codes in the magnetically confined fusion community are based on the traditional scalar
and vector potential formulation, typically considering only the parallel component of the vector potential. These
studies are generally limited to specific branches or a few types of instabilities, such as drift-wave turbulence or
Alfvénic modes. In contrast, we have developed a gauge-free drift-kinetic Vlasov–Maxwell model coupled with
a fully kinetic description of ions [1], extending the geometric Particle-In-Cell (PIC) framework on dual grids
[2]. The approach relies on a discrete action principle using only the electric and magnetic fields, avoiding the
use of potentials. The resulting macroscopic Maxwell equations incorporate polarization and magnetization terms,
enabling seamless coupling with a fully kinetic model for treating energetic particles and edge physics. The hybrid
model highlights the ability to resolve ion-cyclotron frequency ranges [1]. Notice however that we don’t add any
approximation beyond the gyrokinetic particle Lagrangian. This means that light waves and compressional Alfvén
waves are still present in our drift-kinetic models. Addressing Darwin like and quasi-neutrality assumptions to
remove these high frequency waves will be the purpose of future work.

Plasma physics models often exhibit a Hamiltonian structure with conserved invariants such as the Hamilto-
nian, Gauss’s law, and∇ ·B = 0 [3, 4]. Structure-preserving numerical methods aim to maintain these invariants
for stable numerical solutions. The geometric approach discretizes the Hamiltonian structure rather than the partial
differential equations, ensuring conservation of appropriately discretized invariants [5].
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Earlier studies introduced hybrid kinetic models using the E&B formulation directly [6, 7]. As noted in [6, 8],
the compressional Alfvén mode imposes the most stringent constraint on the time step when kθρi ∼ 1, advanced
numerical methods such as the implicit methods [9] are necessary for overcoming this constraint. The gyrokinetic
E&B models developed in previous works for low-frequency electromagnetic fluctuations [10], kinetic Alfvén
waves in tokamak plasmas [8] and hybrid model [6, 7] differ from our approach in both the formulations and the
focus on geometric numerical methods for discretizing the equations. A key feature of our approach is that we
derive both the field and particle equations of motion from a Lagrangian coupling drift-kinetic electrons with fully
kinetic ions at the continuous level, ensuring numerical consistency and structure preserving in the discretized
space. This contrasts with the treatment that separately discretizes the physical field and particle equations, for
which maintaining the same conservation laws as in the continuous Lagrangian can be challenging.

Beginning with the gyrokinetic Lagrangian of Burby and Brizard [11] in the Zero Larmor Radius limit, we
develop a Lagrangian that couples drift-kinetic electrons with fully kinetic ions at the continuous level. We then
propose a discretized version of the Lagrangian based on the Mimetic Finite Difference framework on dual grids
[2] and the PIC method. From this discretized formulation, we derive the equations of motion for the PIC markers,
as well as the discrete generalized Maxwell equations, which include polarization and magnetization terms arising
from the drift-kinetic particles. The hybrid kinetic model integrates both kinetic and drift-kinetic contributions,
providing a unified framework applicable to edge plasma physics in magnetic confinement fusion devices.

2. A GAUGE-FREE DRIFT-KINETIC MODEL

The equations of motion

dX

dt
= Vq

B∗

B∗
q
+

1

B∗
q

(
E × bext −

µ

qe
∇Bq,tot × bext

)
= vgc, (1)

dVq

dt
=

q

m

B∗

B∗
q
·
(
E − µ

q
∇Bq,tot

)
= agc. (2)

The a macroscopic Maxwell system including polarization and magnetization effects coming from the drift-kinetic
particles (in strong form)

∂D
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−∇×H = −Jgc, (3)

∂B

∂t
+∇×E = 0, (4)

∇ ·D = ρgc, (5)
∇ ·B = 0. (6)

Equation (5) is guaranteed to hold at all times, as long as it is satisfied at the initial time and Eq. (6) is preserved
by the numerical discretization. The displacement field D and the magnetic field intensity H by

D = ϵ0E +P, (7)
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as well as the polarization P and the magnetization M
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The guiding center current
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3. DISCRETIZATION WITH MIMETIC FINITE DIFFERENCES

The study employs a Mimetic Finite Difference (MFD) discretization scheme on dual grids [2]. Scalar and vec-
tor potentials, electromagnetic fields, and current densities are discretized separately on primal and dual grids.
Discrete gradient, curl, and divergence operators are constructed using Kronecker products, ensuring exact com-
patibility with Maxwell’s equations.

The key idea is that each physical quantity carries a distinct meaning, which naturally determines its discrete
representation. Potentials are evaluated at points; the action of a force is represented by its circulation along a path;
currents correspond to fluxes of current density through surfaces; and charges are obtained from volume integrals
of charge density. The MFD framework captures these distinctions by assigning different types of integrals to
different unknowns: potentials are approximated by point values (as in standard finite differences), the electric
field E by line integrals along mesh edges, the current density J and magnetic field B by fluxes through mesh
faces, and the charge density ρ by cell integrals.

Figure 1a shows the corresponding degrees of freedom. On the left, the vertices of the grid are used to
discretize the potentials, then the edges of the mesh in each direction will be used for the three components of
for example E, the fluxes through the faces orthogonal to each direction, will be used to discretize the three
components of B and densities will be discretized as integrals over each cell of the mesh.

On a Cartesian grid a cell on the dual grid exactly matches a vertex on the primal grid and an edge on the
primal grid exactly matches a face on the dual grid, and vice-versa, as shown in Fig. 1b. E and B are primary
geometric quantities defined on the primal grid, whereas D, H , and J are response quantities naturally associated
with the dual grid. This separation ensures both geometric and physical consistency of Maxwell’s equations at the
discrete level.The Geometric Basis of Numerical Methods 25

Manifold

Cell complex

0-cells 1-cells 2-cells 3-cells

Fig. 6 Subdivision of the domain (manifold) in points (0-cells), line segments (1-cells), faces (2-
cells) and volumes (3-cells)

!.3/;i will refer to oriented volumes, all of the same type of orientation (either
inner-oriented or outer-oriented). Together these building blocks will constitute a
so-called cell complex, but in computational science we usually refer to such a
collection as a grid or a mesh, see Fig. 6. The main difference is that a grid or mesh
is usually not oriented whereas a cell complex is.

A collection of oriented k-dimensional cells will be called a k-chain, c.k/, and is
usually written as a formal sum

c.k/ D
#kX

iD1
mi!.k/;i ;

where #k denotes the number of k-cells in the complex and mi is 0, when the cell
!.k/;i is not part of the chain, is equal to 1 when the cell !.k/;i is in the chain and
mi D !1 when !.k/;i is in the chain but the orientation is opposite to its default
orientation.

In the examples given above (mass, flux and velocity) we assigned values to
geometric objects. Now we are going to assign values to the k-cells. Let ! .k/;j be
the operator which assigns the value 1 to the k-cell !.k/;j and 0 to all the other
k-cells. This will be denoted by

h! .k/;j ; !.k/;i i D ı
j
i D

8
<

:

1 if i D j

0 if i ¤ j

:

If we want to assign a different value to a k-cell, say the value cj , then we apply
cj!

.k/;j to the k-cells. We can collect all these assignments into a formal sum and
write

(a) Discrete unknowns on a Cartesian grid. (b) Primal and dual grids.

FIG. 1. Degrees of freedom on the Cartesian grid (left) and the corresponding primal-dual relationships (right).

4. LOW-STORAGE RUNGE–KUTTA SCHEME FOR TIME DISCRETIZATION

A low-storage Runge-Kutta scheme is used for time discretization, optimizing memory usage in large-scale PIC
simulations. We use the Williamson (2N) methods [12], which are low-storage Runge–Kutta (LSRK) schemes for
solving ordinary differential equations of the form

u′ = F (u(t)), u(0) = u0,

using an s-stage approach with minimum memory requirements of only one additional copy. Williamson’s method
is defined as follows:

S1 := un

for i = 1 : s do
S2 := AiS2 +∆tF (S1)

S1 := S1 +BiS2

end

un+1 = S1

(12)

The scheme ensures conservation of total energy, including kinetic and electromagnetic field contributions. Veri-
fication tests confirm the accuracy and stability of the numerical method.

3
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5. SIMULATION RESULTS

5.1. Verification of drift-kinetic electrons

The dispersion relation of the drift-kinetic model is derived, demonstrating consistency with theoretical expecta-
tions. The numerical experiments validate the models by analyzing wave dispersion relations in a uniform plasma
with a background magnetic field. To verify the drift-kinetic model, we first test a one-species simulation with
only electrons with vth,e = c. When k⊥ = 0, there are three eigenmodes. When Dzz = 0, Ez can be non-zero.
It is the Langmuir wave, electrostatic perturbation is parallel to Bext and parallel propagating. We initialized a
density perturbation with ρ = 1 + 0.04 cos(kzz). The perturbation is electrostatic (B ≪ E) and parallel to Bext.
As shown in Fig. 2a with kz = 0.4, the damping of Ez is observed, and the results are in good agreement with the
analytical solution. We also fit the numerical results to determine the frequency and damping rate of the mode for
varying kz as shown by the dots in Fig. 2b. Finally, we show Fig. 2c the wave spectrum. The analytical results
are displayed as lines. We observe two branches of electromagnetic waves propagating along the magnetic field.

(a) Electrostatic perturbation. (b) Scan in kz . (c) Wave spectrum

FIG. 2. Simulations with only drift-kinetic electrons

5.2. Benchmark of Fully Kinetic, Hybrid, and Drift-Kinetic Two-Species Models

To compare three modeling approaches—fully kinetic (FK) for both electrons and ions, drift-kinetic electrons
with fully kinetic ions (Hybrid), and drift-kinetic (DK) for both species—we consider a two-species plasma with
reduced mass ratio mi/me = 10 and qi = −qe. The initial conditions are Gaussian distributions with thermal
velocities vth,e = 0.05c and vth,i = 0.05c/

√
10. We use ωpe/|ωce| = 1. Consider a background magnetic field

Bext = Bext ẑ. The wave vector is assumed to be in the xz plane, with k = (k⊥, 0, k∥). Carrying out the tedious
but straight-forward analysis, we can then obtain the following linear dispersion relation for a cold and uniform
plasma. The dispersion relation is written as

←→
D (k, ω)E = (1 + χ)E + c2

ω2k × k ×E = 0. For the well known
cold plasma dispersion relation (CPDR):

←→
D (k, ω) =

S − n2 cos2 θ −iD n2 sin θ cos θ
iD S − n2 0

n2 sin θ cos θ 0 P − n2 sin2 θ

 ,

where n ≡ ck/ω, the wave vector k = (k sin θ, 0, k cos θ).
The corresponding quantities in Stix notation [13] are:
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∑
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2
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.

When there is only one type of ion in the system besides the electrons, then we can derive the dispersion relation
for the drift-kinetic electron fully-kinetic ion (Hybrid) model [7] for which
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where ω2
p = ω2

pe + ω2
pi. For the drift-kinetic electrons, there is no resonance at the electron cyclone frequency.

And for the drift-kinetic model for both electrons and ions (DK),
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.
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In the equations for S, D and P , the cyclotron frequency is defined as ωcs ≡ qsBext/ms. Note that qs can be
either positive or negative. The dispersion relation

←→
D (k, ω) = 0 can be expressed as a polynomial equation, for

which established methods can be used to determine all the roots numerically [14, 1].
Later a two-species simulation compared fully kinetic, hybrid, and drift-kinetic models, revealing differences

in wave dispersion properties.

5.2.1. Waves with k perpendicular to Bext

We consider a quasi-one-dimensional simulation with a domain of size [0, 64 de] × [0, de] × [0, de] and a grid of
256×8×8 points, where de = c/ωpe is the electron inertial length. We use 500 particles per cell for both species,
generated by the quasi-random Sobol sampler. The particle B-spline is of degree 2 in x, y, and z directions. We
employ the 5-stage fourth-order LSRK method with a time step of ∆t = 0.05ω−1

pe , and the total simulation time
is T = 200ω−1

pe . Figure 3 shows the wave spectrum along the x axis of Ex, Ey , Ez (averaged over y, z) for our
different models.

The dashed lines representing the analytical results in the cold plasma limitation are obtained by solving the
dispersion relations for each model. As shown in Figs. 3a, 3d and 3g, the wave spectrum aligns closely with
the analytical results for the X-mode, CAW-X mode, and O-mode. At higher wave numbers, the accuracy of the
numerical dispersion relation compared to the analytical results can be further improved by using a higher grid
resolution. The lower X-mode asymptotes to the upper hybrid resonance. When comparing the FK and Hybrid
models, the upper X-mode is absent in the Hybrid model. The X-mode in the Hybrid model has a different
dispersion relation and cutoff. When ωpe/ωce is smaller (low density) and mi/me is larger, the cutoff frequency
approximates to ωL. And the X-mode in Hybrid mode has no resonance at ωUH , as the electron cyclotron wave
is absent. The transition of compressional Alfvén waves (CAW) to the X-mode branch is identical in both the FK
and Hybrid models. In the DK model, even fewer modes exist as shown in the Figs. 3c and 3f. The CAW does
not have resonance at ωLH as the ion cyclotron effect is absent. The O-mode, which has a cutoff frequency at ωp,
exists in three models as shown in Figs. 3g, 3h and 3i. The horizontal lines in the spectrum plot of the FK model
corresponding to integer values are the electron Bernstein waves since ωce = 1.

5.2.2. Waves with k parallel to Bext

We use a domain of size [0, de]× [0, de]× [0, 64 de] and a grid of 8×8×256 points, other parameters are the same.
Then we show the numerical dispersion relation along the z axis. The results in the x-direction and y-direction
are identical; therefore, we omit the Ex-direction wave spectrum in this analysis.

As shown in Fig. 4, the upper R-mode is absent in the Hybrid model compared to the FK model. In Fig. 4a,
CAW denotes the compressional Alfvén waves and ECW and ICW denote electron and ion cyclotron waves. In
the Hybrid model, the CAW does not transit to ECW due to the absence of electron cyclotron resonance as shown
in Figs. 4a and 4b. The compressional Alfvén waves (CAW) exists resonance near ωLH at k perpendicular to B
and at ωci at k parallel to B as shown in Figs. 3a, 3d and Fig. 4a. The CAW-ICW branch is the same in the FK
and Hybrid models. In the DK model, even fewer modes exist as shown in the Fig. 4c and the CAW does not
have resonance. The waves with oscillation in Ez are the same in the three models as shown in Figs. 4d, 4e and
4f. The more accurate dispersion relation for the Langmuir wave are Dzz = 0, which are damping modes and the
damping rate is stronger when k larger as shown in Fig. 2b. The resonance frequency in the cold plasma limitation
is at ωp.

As shown in Figs. 3 and 4, the hybrid model captures key plasma wave phenomena absent in purely drift-
kinetic, highlighting its applicability to magnetic confinement fusion research. By combining fully kinetic ions
with drift-kinetic electrons, it retains essential wave features while suppressing high-frequency electron cyclotron
modes. The fully kinetic model exhibited Bernstein waves, absent in the hybrid and drift-kinetic models. These
simulations illustrate how different models impact wave propagation and validate the effectiveness of the hy-
brid approach. The proposed geometric PIC discretization further extends structure-preserving methods to hybrid
kinetic models. The Hybrid model is suitable to study the ion cyclotron frequency and low-hybrid waves with-
out modification. When applying the Hybrid model to investigate the lower X-mode, L-mode and upper CAW
branches, the applicable regime should be carefully considered. The DK model is suitable for the low-frequency
CAW waves.

6. CONCLUSION AND OUTLOOK

We have developed a new geometric PIC discretization for a gauge-free drift-kinetic model that can be seamlessly
integrated with a fully kinetic model. The geometric PIC framework successfully bridges drift-kinetic and fully

5
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(a) FK. Wave spectrum of Ex vs kx. (b) Hybrid. Ex vs kx. (c) DK. Wave spectrum of Ex vs kx.

(d) FK. Wave spectrum of Ey vs kx. (e) Hybrid. Ey vs kx. (f) DK. Wave spectrum of Ey vs kx.

(g) FK. Wave spectrum of Ez vs kx. (h) Hybrid. Ez vs kx. (i) DK. Wave spectrum of Ez vs kx.

FIG. 3. Comparison of waves with k perpendicular to Bext for Fully Kinetic and Hybrid models. Left: Fully
kinetic for both electrons and ions (FK). Middle: Drift-kinetic electrons with fully kinetic ions (Hybrid). Right:
Drift-kinetic for both electrons and ions (DK).
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(a) FK. Wave spectrum of Ey vs kz . (b) Hybrid. Ey vs kz . (c) DK. Wave spectrum of Ey vs kz .

(d) FK. Wave spectrum of Ez vs kz . (e) Hybrid. Ez vs kz . (f) DK. Wave spectrum of Ez vs kz .

FIG. 4. Compare the waves with k parallel to Bext for the Fully Kinetic and Hybrid models. Left: Fully kinetic for
both electrons and ions (FK). Middle: Drift-kinetic electrons with fully kinetic ions (Hybrid). Right: Drift-kinetic
for both electrons and ions (DK).

kinetic models, preserving structure and enabling hybrid simulations. Future work will integrate quasi-neutrality
assumptions to suppress light waves and address Darwin approximations, further optimizing for edge plasma
studies.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Zhixin Lu, Dr. Roman Hatzky for insightful discussions on GK simulations.
This work has been carried out within the framework of the EUROfusion Consortium, funded by the European
Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 - EUROfusion).
Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the
European Union or the European Commission. Neither the European Union nor the European Commission can
be held responsible for them.

REFERENCES

REFERENCES

[1] Guo Meng, Katharina Kormann, Emil Poulsen, and Eric Sonnendrücker. A geometric particle-in-cell dis-
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