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Abstract

Fast ions exhibit a notable acceleration during edge localized modes (ELMs) in tokamak devices. This paper presents an
analytical investigation into the phase-space transport of fast ions driven by ELMs. Contrary to previous simulation results, it
is shown that ELMs with low-frequency characteristics are inefficient at accelerating fast ions. Instead, the transport of fast
ions is dominated by radial particle transport, resulting from the exchange of canonical toroidal angular momentum. The
associated diffusivity increases sharply for high-energy particles, making fast-ion loss measurements in velocity space appear
as an acceleration process. These theoretical findings are consistent with recent experimental observations and carry practical
implications for the performance of future tokamak reactors.

1. INTRODUCTION

The high confinement mode (H-mode) [1] is the designated operational scenario for next-generation tokamak fusion devices
such as ITER [2]. A key feature of H-mode is the formation of a narrow transport barrier at the plasma edge, which creates a
pressure pedestal. Due to the steep pressure gradient in this pedestal region, H-mode is typically accompanied by burst-like
edge perturbations known as edge localized modes (ELMs) [1, 3, 4]. These recurring bursts can rapidly expel plasma-stored
energy toward plasma-facing components, causing undesirable material erosion and surface melting [5]. Understanding the
interaction between ELMs and charged particles, as well as related transport processes, is therefore crucial for optimizing
fusion performance. On the other hand, confining fast ions is a critical challenge for self-sustaining tokamak reactors, as
ignition relies on self-heating by fusion-produced alpha particles. While the role of Alfvénic fluctuations in fast-ion transport
has been extensively studied [6], ELM fluctuations, from a physical point of view, may also significantly impact fast-ion
transport. However, the key features and underlying physical mechanisms of ELM-induced fast-ion transport remain unclear.

Recent experiments on the ASDEX-Upgrade (AUG) tokamak have reported that fast ions exhibit unusual apparent acceleration
during type-1 ELMs [7, 8]. Direct velocity-space measurements using fast-ion loss detectors (FILD) identified a population of
ions with energies (~160 keV) well above the main energy of neutral beam-injected (NBI) deuterium ions (Eo = 82 keV) during
ELM crashes. This phenomenon is reproducible and strongly correlated with NBI heating and ELM occurrence. It occurs on
a timescale of 10-100 ps during a single ELM crash and disappears when ELMs are suppressed. The high-energy tail is
observed for both circulating and trapped fast ions, though the FILD signal for trapped particles is significantly weaker than
for circulating ones. Additionally, the high-energy component of circulating particles shows fine pitch-angle structures (so-
called "spikes" in FILD signals) that depend on the safety factor qos (the safety factor at 95% of the plasma minor radius). In
contrast, the high-energy component of trapped particles exhibits only a single spike, independent of qos. Based on simulation
results, it was hypothesized that parallel electric fields might account for the observed fast-ion energy gain, assuming magnetic
reconnection occurs during ELMs [7, 8]. However, this mechanism is ineffective for accelerating fast ions for three reasons:
(1) it relies on large-amplitude parallel electric fields, whose strength in previous simulations depends on artificial hyper-
resistivity [9]; (ii) it accelerates charged particles only in the parallel direction, whereas experimental observations show little
change in fast-ion pitch angles; (iii) any parallel electric field would be highly localized near a thin current sheet, with a width
much smaller than the fast-ion gyroradius [10], and such small-scale fluctuations would be averaged out by the finite Larmor
radius (FLR) effect.

In this study, we conduct a gyrokinetic analysis of ELM-induced phase-space transport of fast ions. We demonstrate that ELM
fluctuations primarily drive radial transport of fast ions via magnetic perturbations, and the high-energy fast-ion component
observed in experiments cannot be attributed to ELMs. Unlike fast-ion transport caused by microturbulence [11], ELM-
induced diffusivity increases sharply with fast-ion energy. As a result, higher-energy fast ions are expelled outward more
rapidly by ELMs, creating a high-energy tail in FILD signals that mimics an acceleration process. Both quantitative estimates
of cross-field diffusion time and qualitative transport features are consistent with experimental observations.

The remainder of the paper is structured as follows: Section 2 presents the theoretical model. Section 3 discusses fast-ion
phase-space dynamics, and Section 4 outlines the quasilinear theory. Finally, Section 5 summarizes the conclusions.
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2. THEORETICAL MODEL

We use gyrokinetic theory [12] to analyze fast-ion dynamics during type-I ELM cycles [4]. Following [13], the gyrocenter
motion of a charged particle with mass m and charge e in a background magnetic field B is described by the Hamiltonian:

2
HX,p,w,t) = uB +W7+%(< 8 > —= < 84) > +=L < 8B, >,,) (1)

Here, X, n, and w denote the gyrocenter position, gyrocenter magnetic moment, and parallel velocity, respectively. v, =
+/ 2uBis the perpendicular velocity. The terms < (-+-) = Jo(-++) and < (-++) >,=J;/(ipV)(:-+) represent gyroaverages of
field variables, where J,, is a Bessel function with argument ipV,, accounting for FLR effects. Notably, H is an adiabatic
invariant in the presence of short-wavelength perturbations [12, 14, 15], so gyrokinetic theory can describe phase-space
transport of fast ions induced by low-frequency, short-wavelength fluctuations [6]. Fast-ion acceleration due to p breaking by
low-frequency, short-wavelength electric fields [16] only occurs if the perturbed electric potential energy is comparable to the
fast-ion kinetic energy [15].

Consistent with gyrokinetic orderings [12], we describe electromagnetic fluctuations using three scalar field variables in the
Coulomb gauge: the scalar potential perturbation 8¢, the parallel vector potential fluctuation A, and the parallel magnetic
field perturbation 6By. In some cases, it is more convenient to use the scalar induced potential dy [17], defined by —cV 8y =
0:64,.

The gyrocenter motion in phase space can be written as:

B B* 0
XU+ 2oz ) (o + 5H) @
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where Q is the cyclotron frequency, 8H = (e/m)[< 8¢ > —(w/c) < 84 > + -] is the perturbed Hamiltonian, and B* is
the modified magnetic field with a unit vector in the parallel direction. For phase-space transport in axisymmetric toroidal
systems, we consider a tokamak with concentric, circular magnetic surfaces and use standard coordinates: minor radius (r),
poloidal angle (0), and toroidal angle (£). The unperturbed motion of charged particles in equilibrium is described by three
pairs of action-angle coordinates: (&, p) with & as the gyrophase; ({, P¢) with P¢ as the canonical toroidal angular momentum
[13]; and (t, E) with E as energy.

To clarify the fundamental physics of ELM-induced fast-ion transport, we focus on perturbation spatiotemporal scales relevant
to the aforementioned experiments, avoiding broader discussions of dominant instabilities in ELMs (an open issue [4]).
Specifically, in typical AUG discharges, type-1 ELM-related edge fluctuations can be divided into two components [7, 18, 19,
8, 20, 21]. During ELM crashes, fluctuations span a broad frequency range, but low-frequency components dominate, with
low mode numbers (n ~ 5) and perpendicular magnetic perturbations 8B, /B ~ 1073, Between ELM cycles, inter-ELM modes
emerge in the high-frequency range, with n ~20-30 and 8B, /B ~ 1074,

Noting that ELM-related divertor current signals show no significant change before and after NBI injection [8], ELM
perturbations in AUG are primarily driven by thermal particles and can be described by ideal magnetohydrodynamics (MHD)
to the lowest order [18, 19]. Thus, the parallel electric field is negligible, leading to 8¢ ~ 0 as a first approximation.
Meanwhile, in the low-f limit, perpendicular pressure balance [17, 6] gives the compressional component of magnetic field
fluctuations as:

8By Amen; kocT; 8¢
B~ B? eBr, o

3)

Here, e is the particle charge, c is the speed of light, n;and T; are the equilibrium ion density and temperature, rp_l =
|0, In P| with P as the equilibrium pressure, and kgis the poloidal wavenumber. Relative fluctuation levels can be estimated
using the ordering parameter €z = 6B, /B, measured directly in AUG [8, 21]:

edy 2wepg 8By Bep
T; klpikl\vi’ B 21rpk)
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where kj is the parallel wavenumber, and v; and p; are the velocity and gyroradius of thermal ions, respectively. For
typical AUG edge parameters [7, 8] B =25 T, Ip = 0.8 MA, n; =5x 10" m3, T; = 0.5 keV, 1, = 0.05 m), Eq. (4)
shows |SB||| & |8B,|. Substituting these results into the fast-ion Hamiltonian (Eq. 1) gives:

wd4; kyw 1 v1p8By _ vikip 8B 1
cS¢ ® > 1, wé4, w 8B, « ©)

Thus, the perpendicular magnetic perturbation term dominates the perturbed Hamiltonian of fast ions.

From Hamiltonian theory, particle acceleration is governed by:
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H =0d,6H (6)

This gives an order-of-magnitude estimate for the acceleration time: At ~ A H/(w8H). Given that the observed energy gain
is comparable to the unperturbed energy ( AH ~ Hy = vZ/2 [7, 8]) and the perturbed Hamiltonian is dominated by
perpendicular magnetic fluctuations (8H = —ew < 84, >/(mc) ~ —( Q w/kl) < 8B, >/B), we find:

H, kipo B
At ~—0 2P0 =
t w8H w <8B,> (7)

Equations (3)—(7) are consistent with standard nonlinear gyrokinetic orderings [12] and apply to general low-frequency
(compared to the ion cyclotron frequency) electromagnetic fluctuations. Using parameters for low-n modes (|8B,/B]| ~
01073 —=1072),k,py S 1 and wyo, ~ O(10)kHz) and inter-ELM modes (|8B,/B| ~ 0(107% —107%),k, p, ~ O(1),
Wipe ~ 0(100)kHz), the estimated acceleration times are:

A tigw ~ 0(10% = 103) /wjy ~ 0.1 — 155,
A tie ~ 0(10% = 10%)/wj ~ 1 — 10's (8)

Thus, due to their low frequency and amplitude, neither inter-ELM modes nor dominant low-n modes can explain the observed

rapid fast-ion acceleration on a timescale of At ~ 10 — 100 ps. In other words, ELMs cannot effectively accelerate fast
ions.

3. PHASE SPACE DYNAMICS

To understand the observed "acceleration" phenomenon, we analyze phase-space particle dynamics during the ELM cycle
from a Lagrangian perspective. An ELM cycle includes a single ELM burst and the inter-ELM period [22], typically on a
millisecond timescale in AUG discharges—much longer than the fast-ion bounce/transit period [8, 21].

Physically, gyrocenter motion in electromagnetic fluctuations involves two distinct time scales [23]. On short timescales, the
gyrocenter undergoes unperturbed bounce/transit motion in the equilibrium axisymmetric magnetic field; small-amplitude
fluctuations do not significantly affect trajectories. On long timescales, however, cumulative fluctuations over many
bounce/transit periods can drive significant phase-space transport. For typical AUG parameters, cumulative effects become
noticeable on a timescale between the fast-ion bounce/transit period and the duration of fast-ion filaments observed by FILD
(~ 0(100)us [8]). To account for this time-scale disparity, we extend the time variable from t to two variables \(t_0\) and
\(t_1\), where:

—K—==1 O]
Following [23], particle trajectories can be expressed in terms of unperturbed motion constants as:
08(to ty) = S, [wbto + 0, (1 gp. g F D50, 1 gt | + B(to,t1) + [, 80t
Utorts) = wto + 0p 0 g gt/ +0pwy gy t+ Uto, 1)+, 8Ldt,

r(to, 1) =7 + (o, ty) + [,* 67 dt". (10)

Here, w;, and wdenote the bounce and transit frequencies for trapped (8. = 1) and circulating (&, = 0) particles,
respectively. wg = { = qb + wgy, where q is the safety factor and Wy = {— g6 — g8 is the toroidal precession frequency.

The average () = (wp/2m) $(-+-)dB/B is over the equilibrium particle orbit. The functions 8,7, and # describe
oscillations in the equilibrium trajectory, parameterized by actions (i, P¢, E) and periodic in t, with zero average. For finite-
amplitude fluctuations, these functions may lose periodicity on the nonlinear timescale t;, corresponding to secular transport.
The terms 87 = Vr - 8X, 80 = V0 - 8X, and 8{ = V(- 8X represent orbit modifications due to field perturbations.

An arbitrary single-particle scalar field 6Q,, experienced along the trajectory can be expressed as:
80, = X, elmO-ntron A () = eiwnto—in[w;t0+apzw1f;1 8Pgdt’+dpwg [y SEdL'|-in [} tat’

. t1 ’ t1 e SN
i(8cm+D)|wpto+0p,w SPrdt'+0gw SEdt'|+im [~ 80dt
X Zm,le (8¢ )[ btoTOpy bfo 4 E bfo ] .fo Cm,l (11)
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where

dty _; L — ot
Cm1 = §%e‘”“’bt°‘m<“meAn‘m‘l r+7+ fol &7 dt’ (12)
— 0 - "

FDOW

Equation (11) corresponds to a Lagrangian decomposition including nonlinear orbit distortion from electromagnetic
fluctuations. Equation (12) shows that, due to the finite drift orbit width (FDOW) effect, orbit-averaged fields for trapped
particles are typically smaller than for circulating particles, leading to weaker cross-field transport—consistent with
experimental observations of weaker FILD signals for trapped particles [7, 8].

The nonlinear resonance condition is expressed via the time variation of the wave-particle phase @: © =
n [wg + 0p 8Py + 050;SE| — (8m + 1) [wp + 0p ;8P + 05w, 8E | + nS{ —m8O — w, =0, where m and | are
integers. Since w; and w; depend on motion constants, we derive:

0= [n0p 007 — (8cm + 1) 9p 00, | 8Py + [ 0500 — (8.m + 1) 9w, |8 +n{ — md (13)

where SPZ and 8 account for nonlinear wave-particle resonance [24]. For weak turbulence near a single phase-space island,
we neglect 86 and 8 and use Hamiltonian equations 515( = —0¢6H and 8E = 8,6H. This reduces Eq. (13) to a nonlinear
pendulum equation:

® + w3sin ® =0 (14)

with initial conditions (9 o ® o = nwg = Bm+ Doy — wn) . The wave trapping frequency satisfies w3 =

SHyp, {0 [n dp,w7 — (5m+ 1) 6;,(0),,] + wy[n Opwg— (6cm+1) drwp|} . Equation (14) can be derived from the
2

Hamiltonian H, = ® /2 — w? cos © describes nonlinear wave-particle dynamics around a finite-size phase-space island

and can be solved exactly using Jacobi elliptic functions [25]. Particle motion has two forms: wave-circulating (H, > w?3) and
wave-trapped (H, < w?). Focusing on the separatrix (H, = w?), the island full width at ® = 0 is:

A G =4y (15)
From Hamiltonian trajectory properties:
%: _nHm,;sin (-)’ (16)
Z(S_(fz_u)nHmésin&)‘ a7
with ® along the separatrix given by energy conservation:
@'2 =20%(1+cos ©) (18)

Solving Eq. (17) gives the total energy change during half a bounce along the separatrix:

wp

8E=%[\/1+cos@0—\/l—cos@o] (19)

The maximum energy exchange in a single phase-space island is:

_ 2Wn8Hm,

SE (20)

wp

Equation (20) shows efficient acceleration requires |wy| » |wg|, consistent with the weak turbulence limit. The maximum
canonical momentum exchange is:
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_ 2n8Hp

wpg

8P, @1

Notably, ndE — w,6P; = 0 [26]. For radial displacement, projecting 87 ~ — dg8H / (r Q) into the island orbit gives:

.k .
87 =~ 8Hp, sin © (22)
The maximum radial displacement is:
_ 2k(:JHm,l
br = Hhafins (23)

For typical AUG edge parameters [7, 8], both low-n dominant modes and high-n inter-ELM modes satisfy:

SERy _ wnRo
oo — vokeps 1 (24)

Thus, canonical momentum exchange dominates phase-space transport. This analysis clarifies that low-frequency ELM-related

fluctuations primarily drive radial transport of fast ions rather than altering their energy. It also provides a basis for applying
quasilinear theory to multi-island scenarios.

4. QUASILINEAR THEORY

To model phase-space transport involving multiple resonance islands, we shift to an Eulerian perspective and conduct a
quasilinear analysis based on gyrokinetic theory. First, we validate quasilinear theory for ELM-cycle fluctuations in AUG
using the Chirikov island overlap criterion [27, 28, 29]. Quasilinear theory applies best when modes induce strong orbit
stochasticity via island overlap. In tokamaks, phase-space island fixed points lie near mode rational surfaces [30]. The island

overlap condition is estimated by the ratio of &r (Eq. 23) to the distance between neighboring rational surfaces Ar ~

1/(nq"):

2
i_rr ~ ZM $]o(klgo)83¢ 25)

For the dominant low-n modes with typical parameters n =~ 2,q ~,s ~,€ = a/R, =,po/a ~ 0 and |86B,/B| ~ 0(1073 —
1072), it is found that kgp =~ 1, and &r/A =~ O(1 — 10) > 1. Conversely, for the inter-ELM modes with n ~ 10 and
|8B,/B| ~ 0(107° — 10™*) , one obtains kgp = 5and &r/A = 0(1072 —1071) < 1. Therefore, only low-n ELM
fluctuations drive global transport.

We derive the quasilinear transport equation for low-n modes. Using canonical phase-space coordinates (r, 0, {, i, Pe, E), the
gyrocenter distribution is described by the full-F gyrokinetic equation [13]:

[0; + 60 + {0;|F = iQF8H (26)
where the operator Q is:
_ilerg, _or
QF8H =i [6E 0¢ Pre BZ] SH 27)

Separating the convective term from kinetic compression K via F = i(e/m)QF 0{01]0&]1 + K, the gyrokinetic equation
becomes:

[0, + 600+ (0K = iQF§D (28)

where
80 == [Jo(8¢ — &) — Jowq 07 9550 + 22171158 (29)
is an effective potential from three field-aligned forces [31]: 6¢ — &Y (parallel electric field, negligible in ideal MHD),

wg 071 0¢85y (dominantvy X 8B, force in ELM-fast ion interactions), and 6B (mirror force). The magnetic drift frequency
is wg ={—0¢—q0~q/(QRyr)(W? + uB)(cos 0 + s0sinB) with s =rq’/q (magnetic shear).
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Using Reynolds decomposition K = Ky + 8K, Ky =< K >gwith spatial averaging < --- > s, the background distribution
equation is:

8, Fp =i < Q8K8D >s—%< Q[(QFy0:p8W)8 ] > (30)

Here, t, and t; distinguish transport and turbulence timescales. The second term (convective contribution) vanishes for dy-
dominated fluctuations. The perturbed distribution satisfies:

[0: +60g + (0;|5K = iQF 8P (31)
Combining Egs. (30) and (31) defines the quasilinear transport problem.
For Fourier modes§® =Y, exp(iwt — in) 8P (r,0), Eq. (31) is solved by integrating along unperturbed orbits.

For circulating particles (0 € [—m, +m) ), transforming to drift orbit centers using exp —i fe(nu)d /ws +nq)d0’ and
approximating the integral (odd in 0) with its lowest Fourier component gives:

fe"m—‘“tdde' ~ 29 (w? + uB)(1 + 35/2) sin 0 = kopy Sin 6 (32)
Equation (31) becomes:
[0 — i6 9g|etkopasinO=inad 5K — g=ikopasin®-inad g F, § (33)
Using
eTkopasind=ingd = 507 Jy(kopa)e P, (34)

the perturbed distribution is:

5K = Z+w ]p(kepd)]pl(kepd)QFOS CD_’,n_p,_‘_pe—in(HmO (35)
nm,p,p'=— w+(m-nqg-pw;
For trapped particles (0 € [—8, +0,]), defining the Fourier transform as:
. 0do’
1 - — , (6a6’
Folgln = 2§ 9@ ™ ora (04 (36)

T

where T = §d9/(§ = 21/w, is the bounce period, and 6, = w fe de’ /@' is the canonical angle conjugate to the second
invariant J [6]), the gyrokinetic equation becomes:

[w—i80g — 0y — nqB]8K = QF,8 P (37)
Decomposing wgas:
Wy ® Wg + @y cos (wb fede—e,) (38)

where Wy is the precession frequency, and transforming to banana centers gives:

. . 0de’\ . . . 0de’\ .
[(.0 _ib B — 6d]e—lkepd sm(mbf 7)_an98[( _ e—lkepd sm(mbf F)ﬂnquFOS(D (39)

The solution is:

-inq® — Jp(kepa)Jm-1(kepa) O p—inqd
<e 8K >, Zp,l—[wﬂwb_ad] QF, < 8De >ppl (40)
where
. a0’ i yo—i B”d—e’
<8De imad >, = lgSWSCDe‘mqe e Tmen ST 5 (41)

T
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Substituting the linear response into Eq. (30) yields the phase-space transport equation:

a

6t1F0 = Py,

[D : ‘;i]“] (42)

where the transport coefficient matrix is:
Dp,p, Dp,r
D(}\) — [SKY [4
Dgp,  Dgg
with elements depending on wave-particle resonance. Equation (42) confines interactions to a 2D manifold (P¢, E) in 5D phase

space. Low-frequency fluctuations drive transport primarily in the canonical momentum channel, leading to cross-field
transport.

For circulating particles, the canonical momentum diffusion coefficient is:

2

nz]p(kepd)lp'(kepd)|5‘Dm_pr+p|

DPZPZ =—Im [Zn,m,p,p’ w+(m-ngq—p"w+idw “3)
wherep, is the magnetic drift orbit width, and 8w accounts for resonance broadening. For low-n ELMs (kgp < kgpg < 1),
FLR and FDOW effects are negligible. Since 8 o wy(w? + uB) o« v?, diffusivity scales as Dp,p, « v°—higher-energy

fast ions are transported more rapidly, creating a high-energy tail in FILD signals that mimics acceleration. This contrasts with
microturbulence-driven transport [11], where Dp p, v~3 due to electrostatic potential dominance and Bessel function

scaling. For trapped particles, the diffusion coefficient is:

. 2
n2J,(kopa) Jm—1(kopa)| <8 Pe~0>, )|

Dpip, = =Im | X mp, [w+lwp—N®g+i50] (44)
with Dpp, v2due to precessional resonance. This explains weaker FILD signals for trapped particles [7, 8].
Using the line-broadened quasilinear model [32, 33] (8w = 2wp), the fast-ion diffusion time out of the plasma is:
At:ﬂz . Zu)BvZ(Ar)Z (45)
Drr " k32 J3(kop |5, |

For AUG low-n modes and Ar = 0.1a, At = 10 — 100 ps, consistent with experiments [7, 8]. This framework explains
FILD pitch-angle structures [7, 8]. Resonance conditions for circulating(w + (m — ng + )w;, — nw, = 0) and trapped (w +
lwy, — nwg = 0) particles show only circulating particles depend on qos. As qos evolves, circulating particles encounter
different resonant islands, creating multiple spikes, while trapped particles remain with one island, showing a single spike.
ELM fluctuations localize to the pedestal, limiting resonant island number and width, making spikes measurable.

5. CONCLUSIONS

We analytically investigated ELM-induced phase-space transport of fast ions using gyrokinetic theory. Contrary to previous
simulations [7, 8], the high-energy fast-ion population observed in AUG during ELMs is not accelerated by low-frequency
ELM fluctuations. Effective acceleration requires high-frequency/high-amplitude fluctuations, beyond this gyrokinetic study’s
scope. Instead, low-frequency ELMs drive radial transport via magnetic perturbations. Unlike microturbulence-driven
transport, ELM-induced diffusivity scales with v3 (circulating particles) and v? (trapped particles), causing faster outward
transport of higher-energy fast ions and a high-energy tail in FILD signals. Cross-field diffusion time estimates agree with
experiments. Fine pitch-angle spikes in FILD signals correspond to multiple phase-space islands of circulating particles,
detuned by the safety factor via resonance conditions. Trapped particles show a single spike due to q-independent resonance.
Weaker trapped-particle signals result from FDOW effects and precessional resonance. These findings have implications for
future tokamaks: ELMs may detrimentally transport high-energy alpha particles, threatening fusion self-sustainment, while
associated heat loads could challenge plasma-facing component materials.
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