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Abstract 

Fast ions exhibit a notable acceleration during edge localized modes (ELMs) in tokamak devices. This paper presents an 

analytical investigation into the phase-space transport of fast ions driven by ELMs. Contrary to previous simulation results, it 

is shown that ELMs with low-frequency characteristics are inefficient at accelerating fast ions. Instead, the transport of fast 

ions is dominated by radial particle transport, resulting from the exchange of canonical toroidal angular momentum. The 

associated diffusivity increases sharply for high-energy particles, making fast-ion loss measurements in velocity space appear 

as an acceleration process. These theoretical findings are consistent with recent experimental observations and carry practical 

implications for the performance of future tokamak reactors. 

1. INTRODUCTION  

The high confinement mode (H-mode) [1] is the designated operational scenario for next-generation tokamak fusion devices 

such as ITER [2]. A key feature of H-mode is the formation of a narrow transport barrier at the plasma edge, which creates a 

pressure pedestal. Due to the steep pressure gradient in this pedestal region, H-mode is typically accompanied by burst-like 

edge perturbations known as edge localized modes (ELMs) [1, 3, 4]. These recurring bursts can rapidly expel plasma-stored 

energy toward plasma-facing components, causing undesirable material erosion and surface melting [5]. Understanding the 

interaction between ELMs and charged particles, as well as related transport processes, is therefore crucial for optimizing 

fusion performance.  On the other hand, confining fast ions is a critical challenge for self-sustaining tokamak reactors, as 

ignition relies on self-heating by fusion-produced alpha particles. While the role of Alfvénic fluctuations in fast-ion transport 

has been extensively studied [6], ELM fluctuations, from a physical point of view, may also significantly impact fast-ion 

transport. However, the key features and underlying physical mechanisms of ELM-induced fast-ion transport remain unclear.   

Recent experiments on the ASDEX-Upgrade (AUG) tokamak have reported that fast ions exhibit unusual apparent acceleration 

during type-I ELMs [7, 8]. Direct velocity-space measurements using fast-ion loss detectors (FILD) identified a population of 

ions with energies (~160 keV) well above the main energy of neutral beam-injected (NBI) deuterium ions (E₀ = 82 keV) during 

ELM crashes. This phenomenon is reproducible and strongly correlated with NBI heating and ELM occurrence. It occurs on 

a timescale of 10–100 µs during a single ELM crash and disappears when ELMs are suppressed.  The high-energy tail is 

observed for both circulating and trapped fast ions, though the FILD signal for trapped particles is significantly weaker than 

for circulating ones. Additionally, the high-energy component of circulating particles shows fine pitch-angle structures (so-

called "spikes" in FILD signals) that depend on the safety factor q₉₅ (the safety factor at 95% of the plasma minor radius). In 

contrast, the high-energy component of trapped particles exhibits only a single spike, independent of q₉₅.  Based on simulation 

results, it was hypothesized that parallel electric fields might account for the observed fast-ion energy gain, assuming magnetic 

reconnection occurs during ELMs [7, 8]. However, this mechanism is ineffective for accelerating fast ions for three reasons: 

(i) it relies on large-amplitude parallel electric fields, whose strength in previous simulations depends on artificial hyper-

resistivity [9]; (ii) it accelerates charged particles only in the parallel direction, whereas experimental observations show little 

change in fast-ion pitch angles; (iii) any parallel electric field would be highly localized near a thin current sheet, with a width 

much smaller than the fast-ion gyroradius [10], and such small-scale fluctuations would be averaged out by the finite Larmor 

radius (FLR) effect.   

In this study, we conduct a gyrokinetic analysis of ELM-induced phase-space transport of fast ions. We demonstrate that ELM 

fluctuations primarily drive radial transport of fast ions via magnetic perturbations, and the high-energy fast-ion component 

observed in experiments cannot be attributed to ELMs. Unlike fast-ion transport caused by microturbulence [11], ELM-

induced diffusivity increases sharply with fast-ion energy. As a result, higher-energy fast ions are expelled outward more 

rapidly by ELMs, creating a high-energy tail in FILD signals that mimics an acceleration process. Both quantitative estimates 

of cross-field diffusion time and qualitative transport features are consistent with experimental observations.   

The remainder of the paper is structured as follows: Section 2 presents the theoretical model. Section 3 discusses fast-ion 

phase-space dynamics, and Section 4 outlines the quasilinear theory. Finally, Section 5 summarizes the conclusions.   
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2. THEORETICAL MODEL   

We use gyrokinetic theory [12] to analyze fast-ion dynamics during type-I ELM cycles [4]. Following [13], the gyrocenter 

motion of a charged particle with mass m and charge e in a background magnetic field B is described by the Hamiltonian:   

𝐻(𝑋, μ, 𝑤, 𝑡) = μ𝐵 +
𝑤2

2
+

𝑒

𝑚
(< δϕ > −

𝑤

𝑐
< δ𝐴∥ > +

𝑣⊥ρ

𝑐
< δ𝐵∥ >∗)                          (1) 

 Here, X, μ, and w denote the gyrocenter position, gyrocenter magnetic moment, and parallel velocity, respectively. 𝑣⊥ =

√2μ𝐵is the perpendicular velocity. The terms < (⋯ ) ≥ 𝐽0(⋯ ) and < (⋯ ) >∗= 𝐽1/(𝑖ρ∇⊥)(⋯ ) represent gyroaverages of 

field variables, where 𝐽𝑛 is a Bessel function with argument 𝑖ρ∇⊥, accounting for FLR effects. Notably, H is an adiabatic 

invariant in the presence of short-wavelength perturbations [12, 14, 15], so gyrokinetic theory can describe phase-space 

transport of fast ions induced by low-frequency, short-wavelength fluctuations [6]. Fast-ion acceleration due to μ breaking by 

low-frequency, short-wavelength electric fields [16] only occurs if the perturbed electric potential energy is comparable to the 

fast-ion kinetic energy [15].   

Consistent with gyrokinetic orderings [12], we describe electromagnetic fluctuations using three scalar field variables in the 

Coulomb gauge: the scalar potential perturbation δφ, the parallel vector potential fluctuation δA∥, and the parallel magnetic 

field perturbation δB∥. In some cases, it is more convenient to use the scalar induced potential δψ [17], defined by −𝑐∇∥δψ =
∂𝑡δ𝐴∥.   

The gyrocenter motion in phase space can be written as:  

                           𝑋̇ ≡ 𝑋0̇ + δ𝑋̇ ≡ (
𝐵

Ω𝐵∥
∗ × ∇ +

𝐵∗

𝐵∥
∗

∂

∂𝑤
) (𝐻0 + δ𝐻)                                (2) 

where Ω is the cyclotron frequency, δ𝐻 = (𝑒/𝑚)[< δϕ > −(𝑤/𝑐) < δ𝐴∥ > +⋯] is the perturbed Hamiltonian, and 𝐵∗ is 

the modified magnetic field with a unit vector in the parallel direction. For phase-space transport in axisymmetric toroidal 

systems, we consider a tokamak with concentric, circular magnetic surfaces and use standard coordinates: minor radius (r), 

poloidal angle (θ), and toroidal angle (ζ). The unperturbed motion of charged particles in equilibrium is described by three 

pairs of action-angle coordinates: (ξ, μ) with ξ as the gyrophase; (ζ, Pζ) with Pζ as the canonical toroidal angular momentum 

[13]; and (t, E) with E as energy.   

To clarify the fundamental physics of ELM-induced fast-ion transport, we focus on perturbation spatiotemporal scales relevant 

to the aforementioned experiments, avoiding broader discussions of dominant instabilities in ELMs (an open issue [4]). 

Specifically, in typical AUG discharges, type-I ELM-related edge fluctuations can be divided into two components [7, 18, 19, 

8, 20, 21]. During ELM crashes, fluctuations span a broad frequency range, but low-frequency components dominate, with 

low mode numbers (n ~ 5) and perpendicular magnetic perturbations δ𝐵⊥/𝐵 ∼ 10
−3. Between ELM cycles, inter-ELM modes 

emerge in the high-frequency range, with n ~ 20–30 and δ𝐵⊥/𝐵 ∼ 10
−4.   

Noting that ELM-related divertor current signals show no significant change before and after NBI injection [8], ELM 

perturbations in AUG are primarily driven by thermal particles and can be described by ideal magnetohydrodynamics (MHD) 

to the lowest order [18, 19]. Thus, the parallel electric field is negligible, leading to δϕ ≈ 0 as a first approximation. 

Meanwhile, in the low-β limit, perpendicular pressure balance [17, 6] gives the compressional component of magnetic field 

fluctuations as:   

δ𝐵∥

𝐵
≃
4π𝑒𝑛𝑖

𝐵2
𝑘θ𝑐𝑇𝑖

𝑒𝐵𝑟𝑝

δϕ

ω
                                        (3) 

Here, e is the particle charge, c is the speed of light, 𝑛𝑖and 𝑇𝑖  are the equilibrium ion density and temperature, 𝑟𝑝
−1 =

|∂𝑟 ln 𝑃| with P as the equilibrium pressure, and 𝑘θis the poloidal wavenumber. Relative fluctuation levels can be estimated 

using the ordering parameter ϵ𝐵 = δ𝐵⊥/𝐵, measured directly in AUG [8, 21]:   

   
𝑒δψ

𝑇𝑖
∼

2ωϵ𝐵

𝑘⊥ρ𝑖𝑘∥𝑣𝑖
,  

δ𝐵∥

𝐵
∼

βϵ𝐵

2𝑟𝑝𝑘∥
                                   (4) 

where 𝑘∥  is the parallel wavenumber, and 𝑣𝑖  and ρ𝑖  are the velocity and gyroradius of thermal ions, respectively. For 

typical AUG edge parameters [7, 8] (B ≈ 2.5 T, 𝐼𝑃 ≈ 0.8 MA, 𝑛𝑖 ≈ 5 × 10
19 m⁻³, 𝑇𝑖 ≈ 0.5 keV, 𝑟𝑝 = 0.05 m), Eq. (4) 

shows |δ𝐵∥| ≪ |δ𝐵⊥|. Substituting these results into the fast-ion Hamiltonian (Eq. 1) gives:   

  
𝑤δ𝐴∥

𝑐δϕ
∼
𝑘∥𝑤

ω
≫ 1,  

𝑣⊥ρδ𝐵∥

𝑤δ𝐴∥
∼
𝑣⊥𝑘⊥ρ

𝑤

δ𝐵∥

δ𝐵⊥
≪ 1                           (5) 

Thus, the perpendicular magnetic perturbation term dominates the perturbed Hamiltonian of fast ions.  

From Hamiltonian theory, particle acceleration is governed by:   
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𝐻̇ = ∂𝑡δ𝐻                                        (6) 

This gives an order-of-magnitude estimate for the acceleration time: Δ𝑡 ∼Δ𝐻/(ωδ𝐻). Given that the observed energy gain 

is comparable to the unperturbed energy (Δ𝐻 ∼ 𝐻0 = 𝑣0
2/2  [7, 8]) and the perturbed Hamiltonian is dominated by 

perpendicular magnetic fluctuations (δ𝐻 ≈ −𝑒𝑤 < δ𝐴∥ >/(𝑚𝑐) ∼ −(Ω𝑤/𝑘⊥) < δ𝐵⊥ >/𝐵), we find:   

Δ𝑡 ∼
𝐻0

ωδ𝐻
∼
𝑘⊥ρ0

ω

𝐵

<δ𝐵⊥>
                                   (7) 

Equations (3)–(7) are consistent with standard nonlinear gyrokinetic orderings [12] and apply to general low-frequency 

(compared to the ion cyclotron frequency) electromagnetic fluctuations. Using parameters for low-n modes (|δ𝐵⊥/𝐵| ∼
𝒪(10−3 − 10−2), 𝑘⊥ρ0 ≲ 1  and ω𝑙𝑜𝑤 ∼ 𝒪(10)𝑘𝐻𝑧) and inter-ELM modes (|δ𝐵⊥/𝐵| ∼ 𝒪(10

−5 − 10−4), 𝑘⊥ρ0 ∼ 𝒪(1),
ω𝑖𝑛𝑡 ∼ 𝒪(100)𝑘𝐻𝑧), the estimated acceleration times are:   

Δ𝑡low ∼ 𝒪(10
2 − 103)/ωlow ∼ 0.1 − 1 s, 

Δ𝑡int ∼ 𝒪(10
4 − 105)/ωint ∼ 1 − 10 s                                (8) 

Thus, due to their low frequency and amplitude, neither inter-ELM modes nor dominant low-n modes can explain the observed 

rapid fast-ion acceleration on a timescale of Δ𝑡 ∼ 10 −  100   μ𝑠. In other words, ELMs cannot effectively accelerate fast 

ions.   

3. PHASE SPACE DYNAMICS  

To understand the observed "acceleration" phenomenon, we analyze phase-space particle dynamics during the ELM cycle 

from a Lagrangian perspective. An ELM cycle includes a single ELM burst and the inter-ELM period [22], typically on a 

millisecond timescale in AUG discharges—much longer than the fast-ion bounce/transit period [8, 21].   

Physically, gyrocenter motion in electromagnetic fluctuations involves two distinct time scales [23]. On short timescales, the 

gyrocenter undergoes unperturbed bounce/transit motion in the equilibrium axisymmetric magnetic field; small-amplitude 

fluctuations do not significantly affect trajectories. On long timescales, however, cumulative fluctuations over many 

bounce/transit periods can drive significant phase-space transport. For typical AUG parameters, cumulative effects become 

noticeable on a timescale between the fast-ion bounce/transit period and the duration of fast-ion filaments observed by FILD 

(∼ 𝒪(100)μ𝑠 [8]).  To account for this time-scale disparity, we extend the time variable from t to two variables \(t_0\) and 

\(t_1\), where:   

𝑑𝑡1

𝑑𝑡
≪

𝑑𝑡0

𝑑𝑡
= 1                                    (9) 

Following [23], particle trajectories can be expressed in terms of unperturbed motion constants as:   

 θ(𝑡0, 𝑡1) = δ𝑐 [ω𝑏𝑡0 + ∂𝑃ζω𝑏 ∫ δ𝑃ζ𝑑𝑡
′𝑡1

0

+ ∂𝐸ω𝑏 ∫ δ𝐸
𝑡1
0

𝑑𝑡′] + θ̃(𝑡0, 𝑡1) + ∫ δθ̇
𝑡1
0

𝑑𝑡′, 

 ζ(𝑡0, 𝑡1) = ωζ𝑡0 + ∂𝑃ζωζ ∫ δ
𝑡1
0

  ζ 𝑡
′ + ∂𝐸ωζ ∫ δ

𝑡1
0

  𝑡′ + ζ̃(𝑡0,   1) + ∫ δζ̇
𝑡1
0

𝑑𝑡′, 

 𝑟(𝑡0, 𝑡1) = 𝑟̅ + 𝑟̃(𝑡0, 𝑡1) + ∫ δ𝑟̇
𝑡1
0

𝑑𝑡′.                                                      (10)                                                                                            

Here, ω𝑏  and ω𝑡 denote the bounce and transit frequencies for trapped (δ𝑐 = 1 ) and circulating (δ𝑐 = 0 ) particles, 

respectively. ωζ = ζ̇ = 𝑞θ̇ + ω𝑑, where q is the safety factor and ω𝑑̅̅ ̅̅ = ζ̇ − 𝑞̇θ − 𝑞θ̇ is the toroidal precession frequency. 

The average (⋯ ) ≡ (ω𝑏/2π)∮(⋯ )𝑑θ/θ̇  is over the equilibrium particle orbit. The functions θ̃, ζ̃ , and 𝑟̃  describe 

oscillations in the equilibrium trajectory, parameterized by actions (μ, Pζ, E) and periodic in 𝑡0 with zero average. For finite-

amplitude fluctuations, these functions may lose periodicity on the nonlinear timescale 𝑡1, corresponding to secular transport. 

The terms δ𝑟̇ ≡ ∇𝑟 ⋅ δ𝑋̇, δθ̇ ≡ ∇θ ⋅ δ𝑋̇, and δζ̇ ≡ ∇ζ ⋅ δ𝑋̇ represent orbit modifications due to field perturbations.   

An arbitrary single-particle scalar field δ𝑄𝑛 experienced along the trajectory can be expressed as:   

δ𝑄𝑛 = ∑ 𝑒𝑖(𝑚θ−𝑛ζ+ω𝑛𝑡)𝐴𝑛,𝑚(𝑟)𝑚   = 𝑒
𝑖ω𝑛𝑡0−𝑖𝑛[ωζ𝑡0+∂𝑃ζωζ ∫ δ𝑃ζ𝑑𝑡

′𝑡1
0

+∂𝐸ωζ ∫ δ𝐸
𝑡1
0

𝑑𝑡′]−𝑖𝑛 ∫ δζ̇
𝑡1
0

𝑑𝑡′
   

× ∑ 𝑒
𝑖(δ𝑐𝑚+𝑙)[ω𝑏𝑡0+∂𝑃ζω𝑏 ∫ δ𝑃ζ𝑑𝑡

′𝑡1
0

+∂𝐸ω𝑏 ∫ δ𝐸
𝑡1
0

𝑑𝑡′]+𝑖𝑚 ∫ δθ̇
𝑡1
0

𝑑𝑡′
𝑐𝑚,𝑙 𝑚,𝑙     (11) 
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where   

𝑐𝑚,𝑙 = ∮
ω𝑏𝑑𝑡0

2π
𝑒−𝑖𝑙ω𝑏𝑡0−𝑖𝑛ζ̃+𝑖𝑚θ̃𝐴𝑛,𝑚,𝑙 (𝑟 + 𝑟̃ + ∫ δ𝑟̇

𝑡1
0

𝑑𝑡′⏟        
𝐹𝐷𝑂𝑊

)                   (12) 

Equation (11) corresponds to a Lagrangian decomposition including nonlinear orbit distortion from electromagnetic 

fluctuations. Equation (12) shows that, due to the finite drift orbit width (FDOW) effect, orbit-averaged fields for trapped 

particles are typically smaller than for circulating particles, leading to weaker cross-field transport—consistent with 

experimental observations of weaker FILD signals for trapped particles [7, 8].   

The nonlinear resonance condition is expressed via the time variation of the wave-particle phase Θ: Θ
̇
=

𝑛 [ωζ + ∂𝑃ζωζδ𝑃ζ + ∂𝐸ωζδ𝐸] − (δ𝑐𝑚 + 𝑙) [ω𝑏 + ∂𝑃ζω𝑏δ𝑃ζ + ∂𝐸ω𝑏δ𝐸] + 𝑛δζ̇ − 𝑚δθ̇ − ω𝑛 = 0 , where m and l are 

integers. Since ωζ and ω𝑏 depend on motion constants, we derive:   

Θ
̈
= [𝑛 ∂𝑃ζωζ − (δ𝑐𝑚 + 𝑙) ∂𝑃ζω𝑏] δ𝑃ζ̇ + [𝑛 ∂𝐸ωζ − (δ𝑐𝑚 + 𝑙) ∂𝐸ω𝑏]δ𝐸̇ + 𝑛δζ̈ − 𝑚δθ̈               (13) 

where δ𝑃ζ̇ and δζ̇ account for nonlinear wave-particle resonance [24]. For weak turbulence near a single phase-space island, 

we neglect δθ̈ and δζ̈ and use Hamiltonian equations δ𝑃ζ̇ = −∂ζδ𝐻 and δ𝐸̇ = ∂𝑡δ𝐻̅. This reduces Eq. (13) to a nonlinear 

pendulum equation:   

Θ
̈
+ ω𝐵

2 sinΘ = 0                                    (14) 

with initial conditions (Θ
0
,Θ

0

̇
= 𝑛ωζ − (δ𝑐𝑚+ 𝑙)ω𝑏 − ω𝑛) . The wave trapping frequency satisfies ω𝐵

2 =

δ𝐻𝑚,𝑙{𝑛 [𝑛 ∂𝑃ζωζ − (δ𝑐𝑚+ 𝑙) ∂𝑃ζω𝑏] + ω𝑛[𝑛 ∂𝐸ωζ − (δ𝑐𝑚 + 𝑙) ∂𝐸ω𝑏]} . Equation (14) can be derived from the 

Hamiltonian Hp =Θ
2̇
/2 − ωB

2 cosΘ describes nonlinear wave-particle dynamics around a finite-size phase-space island 

and can be solved exactly using Jacobi elliptic functions [25]. Particle motion has two forms: wave-circulating (𝐻𝑝 > ω𝐵
2 ) and 

wave-trapped (𝐻𝑝 < ω𝐵
2 ). Focusing on the separatrix (𝐻𝑝 = ω𝐵

2 ), the island full width at Θ = 0 is: 

ΔΘ
̇
= 4ω𝐵                                      (15) 

From Hamiltonian trajectory properties:   

𝑑δ𝑃ζ

𝑑Θ
= −

𝑛𝐻𝑚,𝑙 sinΘ

Θ
̇ ,                                        (16) 

𝑑δ𝐸

𝑑Θ
= −

ω𝑛𝐻𝑚,𝑙 sinΘ

Θ
̇ ,                                        (17) 

with Θ
̇
 along the separatrix given by energy conservation:   

Θ
2̇
= 2ω𝐵

2(1 + cosΘ)                                     (18) 

Solving Eq. (17) gives the total energy change during half a bounce along the separatrix:   

δ𝐸 =
√2ω𝑛𝐻𝑚,𝑙

ω𝐵
[√1 + cosΘ

0
−√1 − cosΘ

0
]                          (19) 

The maximum energy exchange in a single phase-space island is:   

δ𝐸 =
2ω𝑛δ𝐻𝑚,𝑙

ω𝐵
                                             (20) 

Equation (20) shows efficient acceleration requires |ω𝑛| ≫ |ω𝐵|, consistent with the weak turbulence limit. The maximum 

canonical momentum exchange is:   
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δ𝑃ζ =
2𝑛δ𝐻𝑚,𝑙

ω𝐵
                                              (21) 

Notably, 𝑛δ𝐸 − ω𝑛δ𝑃ζ = 0 [26]. For radial displacement, projecting δ𝑟̇ ≈ −∂θδ𝐻/(𝑟Ω) into the island orbit gives:   

δ𝑟̇ =
𝑘θ

Ω
δ𝐻𝑚,𝑙 sinΘ                                        (22) 

The maximum radial displacement is:   

δ𝑟 =
2𝑘θ𝐻𝑚,𝑙

Ωω𝐵
                                              (23) 

For typical AUG edge parameters [7, 8], both low-n dominant modes and high-n inter-ELM modes satisfy:   

δ𝐸

𝐻0

𝑅0

δ𝑟
=

ω𝑛𝑅0

𝑣0𝑘θρ0
≪ 1                                           (24) 

Thus, canonical momentum exchange dominates phase-space transport. This analysis clarifies that low-frequency ELM-related 

fluctuations primarily drive radial transport of fast ions rather than altering their energy. It also provides a basis for applying 

quasilinear theory to multi-island scenarios.   

4. QUASILINEAR THEORY   

To model phase-space transport involving multiple resonance islands, we shift to an Eulerian perspective and conduct a 

quasilinear analysis based on gyrokinetic theory. First, we validate quasilinear theory for ELM-cycle fluctuations in AUG 

using the Chirikov island overlap criterion [27, 28, 29].  Quasilinear theory applies best when modes induce strong orbit 

stochasticity via island overlap. In tokamaks, phase-space island fixed points lie near mode rational surfaces [30]. The island 

overlap condition is estimated by the ratio of δ𝑟 (Eq. 23) to the distance between neighboring rational surfaces Δ𝑟 ∼
1/(𝑛𝑞′):   

δ𝑟

Δ𝑟
≃ 2√𝑘θρ0√

𝑛𝑞2𝑠

ϵ

𝐽0(𝑘⊥ρ0)δ𝐵⊥

𝐵
                                     (25) 

For the dominant low-n modes with typical parameters 𝑛 ≃ 2, 𝑞 ≃, 𝑠 ≃, ϵ ≡ 𝑎/𝑅0 =, ρ0/𝑎 ∼ 0 and |δ𝐵⊥/𝐵| ∼ 𝒪(10
−3 −

10−2), it is found that 𝑘θρ ≃ 1, and δ𝑟/Δ ≃ 𝒪(1 − 10) > 1. Conversely, for the inter-ELM modes with  𝑛 ≃ 10 and 

|δ𝐵⊥/𝐵| ∼ 𝒪(10
−5 − 10−4) , one obtains 𝑘θρ ≃ 5 and δ𝑟/Δ ≃ 𝒪(10−2 − 10−1) < 1 . Therefore, only low-n ELM 

fluctuations drive global transport.   

We derive the quasilinear transport equation for low-n modes. Using canonical phase-space coordinates (r, θ, ζ, μ, Pζ, E), the 

gyrocenter distribution is described by the full-F gyrokinetic equation [13]:   

[∂𝑡 + θ̇ ∂θ + ζ̇ ∂ζ]𝐹 = 𝑖𝑄𝐹δ𝐻                                    (26) 

where the operator Q is:   

𝑄𝐹δ𝐻 = 𝑖 [
∂𝐹

∂𝐸
∂𝑡 −

∂𝐹

∂𝑃ζ
∂ζ] δ𝐻                                    (27) 

Separating the convective term from kinetic compression K via 𝐹 = 𝑖(𝑒/𝑚)𝑄𝐹 ∂𝑡0
−1𝐽0δψ + 𝐾 , the gyrokinetic equation 

becomes:   

[∂𝑡 + θ̇ ∂θ + ζ̇ ∂ζ]𝐾 = 𝑖𝑄𝐹δΦ                                      (28) 

where   

δΦ =
𝑒

𝑚
[𝐽0(δϕ − δψ) − 𝐽0ω𝑑 ∂𝑡

−1 ∂ζδψ +
𝑖𝑣⊥𝐽1

𝑐
∇⊥
−1δ𝐵∥]                         (29) 

is an effective potential from three field-aligned forces [31]: δϕ −  δψ (parallel electric field, negligible in ideal MHD), 

ω𝑑 ∂𝑡
−1 ∂ζδ𝜓 (dominant𝑣𝑑 × δ𝐵⊥force in ELM-fast ion interactions), and δ𝐵∥ (mirror force). The magnetic drift frequency 

is ω𝑑 ≡ ζ̇ − θ𝑞̇ − 𝑞θ̇ ≈ 𝑞/(Ω𝑅0𝑟)(𝑤
2 + μ𝐵)(cos θ + 𝑠θ sin θ) with 𝑠 = 𝑟𝑞′/𝑞 (magnetic shear).   
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Using Reynolds decomposition 𝐾 = 𝐾0 + δ𝐾, 𝐾0 =< 𝐾 >𝑠with spatial averaging < ⋯ > 𝑠, the background distribution 

equation is:   

∂𝑡1𝐹0 = 𝑖 < 𝑄δ𝐾δΦ >𝑠−
𝑒

𝑚
< 𝑄[(𝑄𝐹0 ∂𝑡0

−1𝐽0δψ)δΦ] >𝑠                      (30) 

Here, 𝑡0 and 𝑡1 distinguish transport and turbulence timescales. The second term (convective contribution) vanishes for δψ-

dominated fluctuations. The perturbed distribution satisfies:   

[∂𝑡 + θ̇ ∂θ + ζ̇ ∂ζ]δ𝐾 = 𝑖𝑄𝐹0δΦ                               (31) 

Combining Eqs. (30) and (31) defines the quasilinear transport problem.   

For Fourier modesδΦ = ∑𝑛 exp(𝑖ω𝑡 − 𝑖𝑛ζ) δΦ(𝑟, θ), Eq. (31) is solved by integrating along unperturbed orbits. 

For circulating particles (θ ∈ [−π,+π) ), transforming to drift orbit centers using exp−𝑖 ∫ (𝑛ω𝑑/ω𝑡 + 𝑛𝑞)𝑑θ
′θ

 and 

approximating the integral (odd in θ) with its lowest Fourier component gives:   

∫
𝑛ω𝑑

ω𝑡

θ
𝑑θ′ ≈

𝑞𝑘θ

Ω𝑤
(𝑤2 + μ𝐵)(1 + 3𝑠/2) sin θ ≡ 𝑘θρ𝑑 sin 𝜃                    (32)   

Equation (31) becomes:   

[ω − 𝑖θ̇ ∂θ]𝑒
−𝑖𝑘θρ𝑑 sin θ−𝑖𝑛𝑞θδ𝐾 = 𝑒−𝑖𝑘θρ𝑑 sin θ−𝑖𝑛𝑞θ𝑄𝐹0δΦ                  (33) 

Using 

 𝑒−𝑖𝑘θρ𝑑 sin θ−𝑖𝑛𝑞θ = ∑ 𝐽𝑝(𝑘θρ𝑑)𝑒
−𝑖(𝑝+𝑛𝑞)θ+∞

𝑝=−∞
,                          (34) 

the perturbed distribution is:   

δ𝐾 = ∑
𝐽𝑝(𝑘θρ𝑑)𝐽𝑝′(𝑘θρ𝑑)𝑄𝐹0δΦ𝑚−𝑝′+𝑝

𝑒−𝑖𝑛ζ+𝑖𝑚θ

ω+(𝑚−𝑛𝑞−𝑝′)ω𝑡

+∞

𝑛,𝑚,𝑝,𝑝′=−∞
                    (35) 

For trapped particles (θ ∈ [−θ0, +θ0]), defining the Fourier transform as:   

ℱ𝒷[𝑔]𝑚 =
1

𝑇
∮𝑔(θ)𝑒

−𝑖𝑚ω𝑏 ∫
𝑑θ′

θ′̇

θ

𝑑 ∫
𝑑θ′

θ′̇
θ

                                (36) 

where 𝑇 = ∮𝑑θ/θ̇ = 2π/ω𝑏 is the bounce period, and θ𝑐 = ω𝑏 ∫ 𝑑θ′/θ′̇
θ

 is the canonical angle conjugate to the second 

invariant J [6]), the gyrokinetic equation becomes:   

[ω − 𝑖θ̇ ∂θ − ω𝑑 − 𝑛𝑞θ̇]δ𝐾 = 𝑄𝐹0δΦ                             (37) 

Decomposing ω𝑑as:   

ω𝑑 ≈ ω𝑑 + ω𝑑̂ cos (ω𝑏 ∫
𝑑θ′

θ′̇
θ

)                                 (38) 

where ω𝑑 is the precession frequency, and transforming to banana centers gives:   

[ω − 𝑖θ̇ ∂θ − ω𝑑]𝑒
−𝑖𝑘θρ𝑑 sin(ω𝑏 ∫

𝑑θ′

θ′̇

θ
)−𝑖𝑛𝑞θ

δ𝐾 = 𝑒
−𝑖𝑘θρ𝑑 sin(ω𝑏 ∫

𝑑θ′

θ′̇

θ
)−𝑖𝑛𝑞θ

𝑄𝐹0δΦ              (39) 

The solution is:   

< 𝑒−𝑖𝑛𝑞θδ𝐾 >𝑚= ∑
𝐽𝑝(𝑘θρ𝑑)𝐽𝑚−𝑙(𝑘θρ𝑑)

[ω+𝑙ω𝑏−ω𝑑]
𝑝,𝑙 𝑄𝐹0 < δΦ𝑒

−𝑖𝑛𝑞θ >𝑏,𝑝+𝑙                  (40) 

where   

< δΦ𝑒−𝑖𝑛𝑞θ >𝑏,𝑚=
1

𝑇
∮
𝑑θ′′

θ′′̇
δΦ𝑒−𝑖𝑛𝑞θ

′′
𝑒
−𝑖𝑚ω𝑏 ∫

𝑑θ′

θ′̇

θ′′

                     (41) 
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Substituting the linear response into Eq. (30) yields the phase-space transport equation:   

∂𝑡1𝐹0 =
∂

∂𝐽
⋅ [𝐷 ⋅

∂𝐹0

∂𝐽
]                                    (42) 

where the transport coefficient matrix is:   

𝐷(λ) = (
𝐷𝑃ζ𝑃ζ 𝐷𝑃ζ𝐸

𝐷𝐸𝑃ζ 𝐷𝐸𝐸
) 

with elements depending on wave-particle resonance. Equation (42) confines interactions to a 2D manifold (Pζ, E) in 5D phase 

space. Low-frequency fluctuations drive transport primarily in the canonical momentum channel, leading to cross-field 

transport.   

For circulating particles, the canonical momentum diffusion coefficient is:   

𝐷𝑃ζ𝑃ζ = −𝐼𝑚 [∑
𝑛2𝐽𝑝(𝑘θρ𝑑)𝐽𝑝′(𝑘θρ𝑑)|δΦ𝑚−𝑝′+𝑝

|
2

ω+(𝑚−𝑛𝑞−𝑝′)ω𝑡+𝑖δω
𝑛,𝑚,𝑝,𝑝′ ]                       (43) 

whereρ𝑑 is the magnetic drift orbit width, and δω accounts for resonance broadening. For low-n ELMs (𝑘θρ ≪ 𝑘θρ𝑑 ≲ 1), 

FLR and FDOW effects are negligible. Since δΦ ∝ ω𝑑(𝑤
2 + μ𝐵) ∝ 𝑣2, diffusivity scales as 𝐷𝑃ζ𝑃ζ ∝ 𝑣

3—higher-energy 

fast ions are transported more rapidly, creating a high-energy tail in FILD signals that mimics acceleration. This contrasts with 

microturbulence-driven transport [11], where 𝐷𝑃ζ𝑃ζ ∝ 𝑣
−3  due to electrostatic potential dominance and Bessel function 

scaling.  For trapped particles, the diffusion coefficient is:   

𝐷𝑃ζ𝑃ζ = −𝐼𝑚 [∑
𝑛2𝐽𝑝(𝑘θρ𝑑)𝐽𝑚−𝑙(𝑘θρ𝑑)|<δΦ𝑒

−𝑖𝑛𝑞θ>𝑏,𝑝+𝑙|
2

[ω+𝑙ω𝑏−𝑛ω𝑑+𝑖δω]
𝑛,𝑚,𝑝,𝑙 ]                      (44) 

with 𝐷𝑃ζ𝑃ζ ∝ 𝑣
2due to precessional resonance. This explains weaker FILD signals for trapped particles [7, 8].   

Using the line-broadened quasilinear model [32, 33] (δω ≈ 2ω𝐵), the fast-ion diffusion time out of the plasma is:   

Δ𝑡 =
(Δ𝑟)

2

𝐷𝑟𝑟
≃ ∑

2ω𝐵𝑣
2(Δ𝑟)

2

𝑘θ
2ρ2𝐽0

2(𝑘θρ𝑑)|δΦ𝑛,𝑚
|
2𝑛,𝑚                                 (45) 

For AUG low-n modes and Δ𝑟 ≈ 0.1𝑎, Δ𝑡 ≈ 10 − 100 μs, consistent with experiments [7, 8].  This framework explains 

FILD pitch-angle structures [7, 8]. Resonance conditions for circulating(ω + (𝑚 − 𝑛𝑞̅ + 𝑙)ω𝑏 − 𝑛ω𝑑̅̅ ̅̅ = 0) and trapped (ω+
𝑙ω𝑏 − 𝑛ω𝑑̅̅ ̅̅ = 0) particles show only circulating particles depend on q₉₅. As q₉₅ evolves, circulating particles encounter 

different resonant islands, creating multiple spikes, while trapped particles remain with one island, showing a single spike. 

ELM fluctuations localize to the pedestal, limiting resonant island number and width, making spikes measurable.   

5. CONCLUSIONS   

We analytically investigated ELM-induced phase-space transport of fast ions using gyrokinetic theory. Contrary to previous 

simulations [7, 8], the high-energy fast-ion population observed in AUG during ELMs is not accelerated by low-frequency 

ELM fluctuations. Effective acceleration requires high-frequency/high-amplitude fluctuations, beyond this gyrokinetic study’s 

scope. Instead, low-frequency ELMs drive radial transport via magnetic perturbations.  Unlike microturbulence-driven 

transport, ELM-induced diffusivity scales with 𝑣3 (circulating particles) and 𝑣2 (trapped particles), causing faster outward 

transport of higher-energy fast ions and a high-energy tail in FILD signals. Cross-field diffusion time estimates agree with 

experiments.  Fine pitch-angle spikes in FILD signals correspond to multiple phase-space islands of circulating particles, 

detuned by the safety factor via resonance conditions. Trapped particles show a single spike due to q-independent resonance. 

Weaker trapped-particle signals result from FDOW effects and precessional resonance.  These findings have implications for 

future tokamaks: ELMs may detrimentally transport high-energy alpha particles, threatening fusion self-sustainment, while 

associated heat loads could challenge plasma-facing component materials.   
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