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Abstract

The magnetic mirror effects are included in the local Fourier-space gyrokinetic eigenvalue solver, ESR,
to study the ion-temperature-gradient (ITG) mode in toroidal geometry. It is found that the magnetic mirror
effects are dominated by trapped ions’ destabilizing effects in the low k i regime and dominated by the passing
ions’ stabilizing effects in the high k i regime. The magnetic mirror effects modify the ITG linear growth rate
through inducing the additional toroidal coupling between the neighboring poloidal harmonics.

1. INTRODUCTION

Drift-wave (DW) instabilities are considered to be the main source of plasma turbulence responsible
for anomalous transport in tokamaks. To estimate the level of DW-induced transport, it is important
to know the local structure of the eigenmodes. For the electrostatic drift wave (DW) instabilities in
tokamaks, many local eigenvalue codes(e.g., FULL [, 2] and HD-7 [3] ) have been developed in the
ballooning space by using the ballooning mode transformation. By using the translational invariance[3],
we developed a new local electrostatic gyrokinetic eigenvalue code, ESR, in the Fourier transformed space
for the drift-wave modes (ITG, TEM, ETG) based on the Vlasov-Poisson description, which benchmarks
well with HD-7 and FULL. However, in HD-7 and ESR, with the trapped ions treated as passing ions,
the assumption of well-circulating particles is adopted. This assumption neglects the magnetic mirror
effects by approximating B ~ BO0. In contrast, the FULL code retains the magnetic mirror effects.

2. METHODS AND IMPLEMENTATION

The passing-ion magnetic mirror (PIMM) effects are included by the poloidal Fourier decomposition
of the magnetic-mirror-effect-related terms in the linear operators of eigenvalue equations, while the
trapped-ion effects are handled by solving the orbit-averaged Vlasov equation.

We apply the following poloidal Fourier decomposition to perturbations,
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FIG. 1. Benchmark results [4] of linear modes: (a) ITG , (b) TEM and (¢) ETG.



Here, z = ng(r) — m is related to the radial distance from the mode rational surface r,,, with m the
poloidal mode number. Since n > 1, the neighboring harmonics can be treated by using the translational
invariance[f, 4]

Sdn(z,m £ 1) = 3¢, (z,m). (2)

The coupled 1D ordinary differential equations for the poloidal harmonics in the (r,#) space transformed
from the 2D partial differential equation in the (z,m) space are decoupled by using the translational
invariance.

If magnetic-mirror effects are included, the parallel ion transit term wy;o, the magnetic drift term wg;o,
and the diamagnetic drift term w.p;o in the gyrokinetic Vlasov equation depend on 6. Specifically,
Wy = :—}”%, wgi = —ke 2573’}‘%3, and wyr; = ekgTL 1+ m(—% + %)] We can represent the three magnetic-
mirror-related terms in the linear operator as Fourier series
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The Fourier coefficients w), wf and w! are computed via Discrete Fourier Transform (DFT), with trun-

cation orders determined by numerical convergence tests.
The orbital average along the unperturbed orbit[§] is defined as

(660 ors(r, 0, E, A, 0) = j'{ 7})5%(7%79'), (6)

with 7, = ¢ dr; the integral is taken over the unperturbed orbit determined by Hy = E; 9(7; r,0,E, N, 0,70)
and 7(7;7,0,E,A,0,79) are the spatial points at ¢ = 7 on the orbit of the gyro-center launched from

(r,0) at t = 19; 9(7’0;7°,0,E,A,0,To) =0, #(1o;r,0,E,\,o,10) =T, 0= {é,Ho}, F= {7, Hp}.

3. MAIN RESULTS

3.1. Passing ion
The modified GKE for the passing ions, which is written as
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Here, the side-bands p = 41, +2 are retained. The additional toroidal coupling between the neighboring
poloidal harmonics due to the PIMM effects is introduced into the GKE, and the additional toroidal
coupling is from the poloidal variation of the parallel ion transit term wy;, the magnetic drift term wy;,
and the diamagnetic drift term w,r;.



3.2. Trapped ion

Following the treatment of trapped electrons in Refs. ] and [4], we derive the orbit-averaged GKE
to obtain the nonadiabatic perturbed distribution function of the trapped ions in the (r,0,(, E, A, o)
coordinates:
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3.3. Poisson Equation

The non-adiabatic perturbed density of passing ions with the magnetic mirror effects in the Fourier space
is written as
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The non-adiabatic perturbed density of the trapped ions in the Fourier space is written as
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The quasi-neutrality equation is written as
2 2
(; + ; J0dd(2) + i [0 (2) + 67" ()] = 0. (11)

Here, the non-adiabatic part of the ion perturbed density is divided into passing and trapped parts:
(WLEP ) (z) and 6ﬁ§t)(z), which are determined by Egs. (E) and (@), respectively. The boundary conditions

are §;(z, E, A, 0)| 400 = 0and 5&(2) |:—+00 = 0. The algebraic eigenvalue problem is solved numerically
by combining the inverse power method and Newton’s method.

3.4. numerical results

The upgraded Fourier-space eigenvalue code ESR shows good agreement with the well known ballooning-
space eigenvalue code FULL.
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FIG. 2. The ITG linear (a) real frequency and (b) growth rate spectra with adiabatic electron response.
The GTC, GT3D, and FULL data are from Ref. [§].

Instability analysis of the ITG mode with adiabatic electrons and full kinetic ions by the upgraded ESR
code yields two primary characteristics: (i) In the low kgp; (< 0.2) regime, the trapped-ion effects are
dominate and enhance the growth rates; (ii) In the high kgp; (> 0.5) regime, the PIMM effects are
significant and reduce the growth rates.
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FIG. 3. Stabilizing effects of PIMM in the high kgyp; regime; destabilizing effects of trapped ions in the
low kgp; regime.

4. CONCLUSION

The instability analysis of the adiabatic electron ITG mode with magnetic mirror effects suggests that
the PIMM effects stabilize the ITG mode mainly in the high k i (> 0.5) regime, whereas the trapped-ion
effects exhibit a strong destabilizing effect mainly in the low k i (< 0.2) regime. This work provides
a linear eigenmode analysis tool for investigating ITG instability in toroidal geometry with magnetic
mirror effects in Fourier space.
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