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The ion temperature gradient (ITG) mode has long been recognized as a major driver of anoma-
lous ion transport. Developing a reduced model that accurately incorporates kinetic effects under
experimental conditions is therefore essential for understanding the underlying physics of ITG. We
propose a refined constant-drift approximation based on averaging the drift frequency over the re-
gion of unfavorable curvature. Using the averaged-drift model together with a newly developed
finite Larmor radius (FLR) expansion algorithm, we derive a reduced kinetic equation for ITG
instabilities. When retaining only first-order FLR effects, this equation reduces to a Schrödinger-
type differential equation. Extending the model via generalized translational invariance enables its
successful application to the reversed magnetic shear configuration. Results from this generalized
model show qualitative agreement with global gyrokinetic GTC simulations.

I. INTRODUCTION

It is well established that the ITG instability is the
major driver of anomalous ion transport in Tokamaks[1].
The subsequent discovery of the internal transport bar-
rier (ITB), characterized by steep temperature and den-
sity gradients near a magnetic shear reversal point[2],
has directed significant attention toward analyzing ITG
modes within reversed magnetic shear configurations.
The formation of the ITB has been observed across var-
ious Tokamaks, including JT-60U[3], JET[4], TFTR[5],
and DIII-D[4, 6, 7]. These observations suggest that the
reversed shear region acts as an isolation layer between
the enhanced confinement region inside and the region of
poorer confinement outside. Therefore, a comprehensive
understanding of ITG modes in reversed magnetic shear
cases is essential.

Numerous numerical studies have focused on the ITG
turbulence transport in reversed magnetic shear (RMS)
configurations[8–10]. These works demonstrate several
distinct behaviors induced by the characteristic struc-
tures of the RMS profile. Notably, radial even and odd
parity eigenstates with comparable growth rates have
been observed in both one-dimensional (1D) models[8, 9]
and global simulations[10]. This is a significant depar-
ture from normal shear cases, where the even parity ITG
mode typically exhibits a greater growth rate than the
odd parity mode. The 1D slab models have shown that
these mode structure characteristics are induced by the
special potential structures inherent to RMS[9]. Further-
more, these studies revealed that the even and odd par-
ity modes may merge with each other when the mode
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peaks, located at different radial positions, are far sep-
arated[8]. A key limitation of these 1D slab geometry
models is that the magnetic drift induced by toroidal
effects in Tokamaks is ignored, which precludes quanti-
tative comparison between these 1D results and global
simulations.

The primary difficulties in formulating a 1D ITG model
for the RMS case arise from the invalidation of the stan-
dard ballooning mode representation and the breakdown
of translational invariance. This problem has typically
been addressed in two ways: either by treating the vari-
ation of the safety factor (q) profile as a second-order
effect that acts on the structure of a slowly varying
envelope[10, 11], or by treating the q-profile variation
as a first-order effect using the generalized ballooning
mode representation[12]. The latter method relies on the
strong influence of the parallel mode structure on modes
such as ITG, allowing the effect of the q profile to be
distinguished from other global effects like density and
temperature profiles. However, the poloidal dependence
of the magnetic drift prevents the straightforward imple-
mentation of a 1D kinetic toroidal ITG model utilizing
the generalized ballooning mode representation, thereby
limiting the extension of slab models[8] to toroidal con-
figurations. Recently, the average magnetic drift approx-
imation has been shown to provide a reasonable ITG
model in the Schrödinger form[13]. This model demon-
strates consistency with global gyrokinetic simulation re-
sults from GTC[14], and highlights the significant role
of the average magnetic drift frequency (induced by the
toroidal effect) in the linear dispersion relation of ITG.
By assuming that the magnetic drift frequency is inde-
pendent of the poloidal angle, this approximation allows
us to extend the existing slab ITG model[8] to a toroidal
case that incorporates the essential magnetic drift effects.
This paper focuses on the derivation and implementation
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of this extended model.

II. REDUCED KINETIC MODEL

We start from the ITG eigenvalue equation in balloon-
ing space. Perturbed particle density δnj in the gyroki-
netic theory[15] can be decomposed into adiabatic and
nonadiabatic components in the form of

δnj = −n0j
qjδφ

Tj
+ n0j

∫
dvhjJ0 [k⊥ (η)αj ] , (1)

where the subscript j represents particle species (j = i
for ion, j = e for electron), qe = −e, qi = Zie (Zi = 1
throughout this paper), δφ is perturbed electrostatic po-
tential, n0j is unperturbed density, Tj is temperature,
αj = v⊥/Ωj is gyroradius with gyrofrequency Ωj =

qjB/mj , k⊥ = kθ
√

1 + ŝ2η2 is the wave vector perpen-
dicular to the field line with η, ŝ, kθ representing the ex-
tended poloidal angle, magnetic shear and poloidal wave
number, respectively, and the zeroth order Bessel func-
tion J0 comes from the finite Larmor radius (FLR) ef-
fects. While electron is assumed adiabatic such that
the non-adiabatic perturbed electron gyrocenter distri-
bution he = 0, the non-adiabatic perturbed ion gyro-
center distribution hi is given by solving the gyrokinetic
equation[15, 16](
i
v‖

qR

∂

∂η
+ ω − ωdi

)
hi =

qiFMi

Ti

(
ω − ωT

∗i
)
J0 [k⊥ (η)αi] δφ (η) ,

(2)
in which

ωT
∗i = ω∗i

[
1 + ηi

(
v2/2v2ti − 3/2

)]
ω∗i = Ti/miΩik × b · ∇lnn0i

ωdi = ω̄di [cos (η) + ŝη sin (η)]
(
v2‖ + v2⊥/2

)
/2v2ti

FMi =
(
2πv2ti

)− 3
2 exp

(
−v2/2v2ti

)
ηi = d lnTi/d lnn0i

with q, mi and vti =
√
Ti/mi representing the safety fac-

tor, ion mass and ion thermal velocity, respectively. By
substituting the density perturbations of ion and electron
into the quasineutrality condition, the linear ITG eigen
problem is formulated as:(

1 +
1

τ

)
δφ (η) =

∫ ∞

−∞
dη′K (ω, η, η′) δφ (η′) , (3)

where τ = Te/Ti and K is the velocity space integration
of the non-adiabatic response[13, 16–19]. It’s found that
Eq. (3) can be simplified by the average magnetic drift
approximation[13]

ωd ≈ ω̄djf (ŝ)
v2‖ + v2⊥/2

2v2tj
, (4)

f (ŝ) = 〈cos (η) + ŝη sin (η)〉ηs

−ηs
, (5)

where operator 〈〉ηs

−ηs
means average over the bad curva-

ture region η ∈ [−ηs, ηs] with ηs determined by equation
cos (ηs) + ŝηs sin (ηs) = 0. Under the average magnetic
drift approximation, the gyrokinetic equation Eq. (2) re-
duces to a first-order, linear ordinary differential equation
with constant coefficients. It then can be transformed to
the Fourier space (radial space, z = qRk‖ is the Fourier
conjugation of η) taking the form(

−
v‖

qR
z + ω

)
ĥj (z)− ω̄djf (ŝ)

v2‖ + v2⊥/2

2v2tj
ĥj (z) (6)

=
qjFMj

Tj

(
ω − ωT

∗j
)
F {J0 [k⊥ (η)αj ] δφ (η)} .

With the first-order FLR expansion

J2
0

(√
2bx⊥

)
≈ J2

0

(√
2bθx⊥

)
(7)

− J0

(√
2bθx⊥

)
J1

(√
2bθx⊥

)√ 2

bθ
x⊥

(
−bθ ŝ2

∂2

∂z2

)
,

(8)

The radial ITG eigenvalue problem[13, 20] can be formu-
lated as:{

∂2

∂z2
+
ω̄dif (ŝ)

(
1 + 1

τ

)
+K0√

2bθ ŝ2K1

}
δφ (z) = 0, (9)

where the integrals K0 and K1 are related to the velocity
integrations which are defined as:

K0 =

[
ω − ω∗i

(
1− 3

2
ηi

)]
M10 − ηiω∗i (M30 +M12) ,

(10)

K1 =

[
ω − ω∗i

(
1− 3

2
ηi

)]
N20 − ηiω∗i (N40 +N22) ,

(11)
where M(n,m) and N(n,m) denote the two-dimensional
velocity quadratures which can be solved by the general-
ized plasma dispersion function[21, 22].

III. REDUCED KINETIC MODEL IN
REVERSED SHEAR CASE

The preceding model, constructed in the ballooning
space, rely on the assumption of the translational in-
variance[23]. However, this assumption is invalid in a
reversed magnetic shear configuration, which breaks the
translational invariance and causes the standard balloon-
ing mode representation to fail. In these cases, the gener-
alized ballooning mode representation[12] or generalized
translational invariance must be employed. For simplic-
ity, we assume that q profile is in quadratic form[12, 24]

q = q0 +
δA,m

n
+ q0ŝ

(r − r0)

r0
+
q20s

2
2

2

(r − r0)
2

r20
,
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where

ŝ =
r0q

′ (r0)

q0
, s22 =

q′′r20
q20

, q0 =
m

n
, (12)

and r0 is the reference flux surface. Therefore,

nq −m = δA,m + ŝrκ +
s22
2n
r2κ = q0R0k‖, (13)

where rκ = kθ (r − r0). The parameter δA,m =
n (q (r0)− q0) quantifies the deviation of the safety fac-
tor q at the reference flux surface (r0) from the rational
number q0. For the reversed shear case considered in
this paper, where we set ŝ = 0 and s22/2n > 0, the num-
ber of rational surfaces is determined by δA,m: two for
δA,m < 0, one for δA,m = 0, and none for δA,m > 0.
n and s2 can be considered as a single parameter since
they only appear in the form s22/2n, However, we choose
to keep parameter n = 10 hereafter for the convenience
of comparison with GTC. Furthermore, Eq. (13) reduce
to normal shear case conveniently when s2 = 0, which
allows the normal and reversed magnetic shear cases to
be considered uniformly using the above expressions.

The reduced magnetic drift model for reversed mag-
netic shear is analogous to that for normal shear. We
adopt the average magnetic drift model given by:

ωd = ω̄dif (0)
v2‖ + v2⊥/2

2v2tj
. (14)

This formulation allows the eigenvalue equation for ITG
modes to be represented in the rκ space. The radial
eigenvalue equation can then be written as:

(
∂2

∂r2κ
+
ω̄dif (ŝ)

(
1 + 1

τ

)
+K0√

2bθK1

)
δφ (rκ) = 0. (15)

To verify the validity of the simplified model Eq. (15),
the CBC parameters were modified for a reversed shear
scenario. The equilibrium is defined by the parameters
ηi = 3.13, εn = 0.45, τ = 1, n = 10, kθρi = 0.4 and a
q-profile given by

q (ψn) = 2.0− 3.1ψn + 4.0ψ2
n,

This profile reverses at ψn = 0.39, where the safety fac-
tor is q = 1.4. Assuming a linear relationship between

ψn and the radial coordinate rκ, the q-profile can be de-
scribed by a quadratic function of rκ in the form:

q = q0 +
1

n

(
δA,m + ŝrκ +

s22
2n
r2κ

)
,

with parameters set to δA,m = 0, ŝ = 0, s2 = 1.78 (these
parameter settings are hereafter referred to as the re-
versed magnetic shear CBC parameters). The verifica-
tion proceeds in two steps. First, the convergence of the
FLR expansion is assessed by plotting the dispersion re-
lations for different FLR expansion orders, as shown in
Fig. (1) (a). These results demonstrate excellent conver-
gence. Next, a comparison is made between the first-
order simplified equation Eq. (15) and GTC simulation
results, depicted in Fig. (1) (b). The results show good
agreements, with some acceptable discrepancies observed
at large kθρi, which confirms the validity of the simplified
model Eq. (15) for the reversed shear case.
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Figure 1: Dispersion relations derived from the reduced
model and compared with GTC simulation results. (a)
Real frequency (solid lines) and growth rate (dashed

lines) of the dispersion relation calculated using the first
four orders of the Finite Larmor Radius (FLR)
expansion (blue, orange, green, and red lines,

respectively). (b) Comparison between the first-order
FLR expansion and GTC simulation results. The

first-order FLR expansion real frequency and growth
rate are shown by the blue and orange solid lines,

respectively. The GTC results for different toroidal
mode numbers (n) are represented by blue, orange, and

green solid markers.

IV. SUMMARY

This work successfully presented a reduced kinetic
model for the ITG mode in toroidal configurations, which
is applicable to both normal and RMS cases. The model
is built upon the concepts of translational invariance
and its extension, generalized translational invariance.
Through quantitative comparison with GTC results, we
demonstrated that the reduced kinetic model is reliable
across relevant experimental parameters.
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