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Abstract

In future fusion reactors, measuring the neutron production rate from Deuterium-Tritium (DT) fusion reactions will be
crucial as it indicates fusion performance. To optimize Tritium consumption and limit neutron activation, a support function
included in the plasma control system called a dud detector will trigger an alarm if the plasma fails to achieve expected fusion
performance. This function has been developed and routinely employed at JET during DT campaigns. This study presents
advanced dud detectors that build upon experience from JET DT operations and incorporate machine learning methods.
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Towards DT operations in BEST, ITER and SPARC, we have investigated the portability and the inherent limitations of these
new detectors by analyzing similar Deuterium-Tritium experiments conducted at TFTR.

1. INTRODUCTION

Fusion reactors will be the most intense and powerful sources of fast neutrons. Indeed, each Deuterium-Tritium
(DT) reaction will produce a 3.5 MeV energetic helium atom and a 14.1 MeV neutron. While the charged Helium
is confined within the plasma, where it contributes to plasma heating thanks to Coulomb collisions, the neutron
will escape toward the wall of the plasma chamber.

In the blanket, neutrons will slow down and release thermal power that will produce electrical power, via a two-
loop cooling circuit, and will breed tritium, by reacting with Lithium6 and Lithium?7.

The counting of 14.1 MeV neutrons produced by fusion reactions per second, known as the neutron rate (Ry), will
be one of the most important metrics in a burning plasma, as it directly measures the device's efficiency in energy
and Tritium production.

Nevertheless, this is not the only reason why the neutron measurements [1] are of special interest for fusion
devices. Neutron diagnostics play also a crucial role in determining the plasma composition, i.e. the deuterium-
trittum fuel ratio, the ion temperature and density [2]. Neutron emission can also be useful to monitor plasma
position, its extend and shape [3]. This requires measurements of spatial emission profiles, so that neutron
emissivity distribution can be reconstructed using special tomographic methods.

In future burning plasma fusion devices, the neutron rate will be exploited in real-time to determine whether the
discharge is behaving as expected or should be terminated, because the plasma is not reaching the target fusion
power due to an abnormal event related to the plasma itself or a system fault.

In this context, at the Joint European Torus (JET) device, already in its first DT campaign, named the DTE],
which took place in 1997, to save the limited neutron and tritium budgets, a controller, named dud detector, had
been used that monitored whether the neutron rate remained above a predetermined curve [4]. In the DTE2
campaign, which took place in 2021, a more sophisticated dud detector algorithm has been exploited in real-time
to detect underperforming baseline plasmas [5-7]. The algorithm relied on performance metrics, i.e. the neutron
rate normalized to the plasma stored energy to the square (Rn/W,?) and the Hog, the ratio between the energy
confinement time and the expected energy confinement time from the empirical, multi-machine energy
confinement time scaling law [5].

However, over 16 deuterium-tritium baseline plasmas, as documented in [7], the dud detector raised a false
positive alarm due to a failure in the real-time Ry signal. This could have been avoided if multiple neutron rate
signals from various neutron diagnostics had been available in real-time. This approach ensures a degree of
redundancy, which can help account for potential problems within the diagnostic equipment itself and/or in the
acquired signals. Another strategy to avoid this kind of issue is to rely on a real-time machine learning (ML)
model, which can generate synthetic neutron rate data, as proposed in [8].

In this paper, we present a first-of-its-kind surrogate model that predicts the time evolution of the neutron
production. Such a model has been developed considering JET DT discharges performed during DTE2 and the
recent DTE3 campaign, carried out in 2023. Various ML methods, such as Support Vector Regressor (SVR) [9],
Gaussian Process Regression (GPR) [10], Bayesian Neural Network (BNN) [11], have been considered and the
one which shows to be most robust and reliable in supplementing missing Ry data is the GPR method. An excellent
accuracy, about 98.3% of the coefficient of determination (R?) has been achieved. Besides this purpose, the ML
model’s capability in forecasting the neutron production can be deployed for real-time monitoring the plasma
performance.

The experience gained during JET DT operations also allows the design of novel dud detectors which rely, for
example on the thermal neutron rate calculations. The applicability of these new dud detection methods, including
the one based on machine learning, has been tested against (Tokamak Fusion Test Reactor) TFTR data [12] in
preparation to next future DT experiments in BEST, ITER and SPARC.

The paper is structure as follows: in section II the neutron rate features in JET DT plasmas are described, in
Section I1I the machine learning approaches for synthetic neutron rate model identification are presented, together
with the quality assessment of the generated data with the original data, in Section IV the insights that have been
gathered in this work are discussed together with the application of the surrogate machine learning models in
reproducing the neutron rate in DTE1 and DT-TFTR plasmas. In Section V, the design of a novel dud detector
based on the thermal neutron production is presented. Section VI provides the conclusions.
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2. NEUTRON RATE IN JET AND TFTR DEUTERIUM-TRITIUM PLASMAS
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FIG. 1. Neutron rate as a function of stored energy to the square in (a) JET DT plasmas and (b) TFTR DT plasmas. The color
code has been used to distinguish the various scenarios explored during DT operations.

During DTE2 and DTE3 campaigns, plasma dynamics were investigated in three main plasma scenarios, which
have been carefully optimized over the last decades to maximize fusion performance, to study the critical physics
issues associated with DT fuel and alpha-particles, to test burning plasma controllers and to extrapolate the
knowhow towards ITER and the next step magnetic fusion devices.

These scenarios are known as the hybrid, baseline, and advanced tokamak and all used a 50/50 D/T ratio [13].
The hybrid scenario produced most neutrons per MJ of plasma stored energy by operating in low density, high
temperature plasma regimes [14, 15], while the baseline scenario achieved high neutron rate by reaching the
highest plasma stored energy, by operating at high plasma current, up to 4 MA [16, 17]. Conversely, the advanced
tokamak scenario used a combination of high plasma current and magnetic field with internal transport barriers
formation to achieve the high neutron rate [18].

For these different DT plasma scenarios the neutron rate, measured by three 233U/ 238U fission chambers located
outside the vacuum vessel [2], is reported in Figurel(a) as a function of the stored energy to the square. Hybrid
plasmas are reported in red, baseline plasmas in blue, and advanced tokamak plasmas in green. The same figure
also includes hybrid plasmas with a Tritium rich content, which was approximately 15/85 D/T mixture instead of
50/50 D/T [19, 20]. This dataset is represented in magenta. Additionally, the figure includes data points for
experiments conducted at low plasma current, toroidal magnetic field and auxiliary power, which were part of
burning plasma control studies [21, 22].

Note that the slope of Ry versus W2 varies depending on the plasma scenario. This variation reflects the different
approaches to achieving fusion production in each scenario, as previously aforementioned. This feature has been
exploited as a performance metric for dud detection in baseline plasmas, as documented in [5, 7].

The same analysis reported in Figure 1(a) has been carried out for DT plasmas performed in TFTR from 1993 to
1997. As at JET, the neutron rate was measured by 23°U detectors [23].

DT TFTR experiments explored various plasma scenarios, including super-shot, advanced tokamak, high-li and
moderate-li [12, 24-27]. The super-shots demonstrated enhanced confinement and performance, thanks to the
strong beam particle fueling of the plasma core, peaked density profiles, high ion temperature in the core, around
2-4 times the electron temperature. Additionally, lithium coating was used to further suppress the influx of
deuterium and carbon [26]. The advanced tokamak plasmas were characterized by reversed shear near the plasma
core accomplished by ramping up the plasma current to create a hollow current profile, coupled with a staged
neutral beam injection power profile, strongly peaked electron density profile, and significant bootstrap current.
TFTR also investigated other methods to enhance confinement and fusion production. The high-li scenario
involved peaking the current density profile by manipulating plasma current growth or ramp-down, leading to a
temporary increase in plasma internal inductance. A less extreme approach, known as the moderate-li regime,
involved rapidly increasing the plasma minor radius just before neutral beam injection.
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Figure 1(b) shows the behavior of the neutron rate as a function of the squared stored energy in TFTR discharges,
considering the various scenarios described previously. Note that, differently from JET, there is less variation in
the Ry versus W,? in the TFTR DT database. This is associated with the fact that all TFTR discharges had
relatively peaked pressure profiles.

3. SURROGATE MODELS FOR NEUTRON RATE

JET plasmas performed during the DTE2 and DTE3 have been analyzed with the purpose of developing new dud
detectors in preparation for upcoming DT experiments in BEST, ITER and SPARC. The new detectors, based on
machine learning models and straightforward analytical formulas, can be used for supplementing missing R, data
and for distinguishing between well-performing plasmas and duds.

For this purpose, a dataset containing 101 DTE2/DTE3 discharges has been created including data collected
during the main heating phase of DTE2 and DTE3 discharges. Table 1 presents the key plasma parameters of the
main plasma scenarios described in the previous Section. Importantly, the database also includes DT plasmas
operating below full power. This deliberate inclusion of lower-performance data ensures the dataset encompasses
a wide range of neutron rate outputs, enhancing its utility for dud detection.

TABLE 1. Main JET DT plasma parameters in the various scenarios analyzed.

Scenario Ip (MA) B (T) Density (m™)
Hybrid 2.3 3.43 2-6
Baseline 3/3.5/3.8 2.8/3.35/3.6 2-8/2-8
Advanced Tok. 2.5 3.8 1.5-3

2.45 3.85 2-6

1.4 1.8 3-4

The features that have been included when creating the dataset are the auxiliary heating power, the core
electron temperature from Electron Cyclotron Emission diagnostic (T¢), the electron density from
interferometer (n.), the Deuterium and Tritium mixture from passive spectroscopy, the Deuterium density
(np) and Tritium density (nr), the stored energy, the neutron rate and the reactivity < ov > defined as
3.68 10 18Te2/3¢-1994Te™ % 78 19],

TABLE 2. Summary of the model performance in the regression task.

Loo. Performance of Surrogate Models (Sorted by R?)

0.981 0.983

0.981
0.978

0.973

0.970 0.969 0.969
0.96 0.963

R? Score

0.950
0.94 1

0.92

0.90

GPR  SVR _ BNN  RF _ GBM  XGB LightGBM DTR _ KNN
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FIG. 2. (a) Neutron rate as a function of time from measurement (in blue), from BNN model prediction (in orange) and the
grey shaded region represents the 95% confidence interval. (b) Normalized density plot with normalized with predicted vs true

measurements values.

Several machine learning methods have been evaluated for the regression task of reconstructing Ry, most of which
were instance-based and did not account for temporal dependencies. The models included the Gaussian Process
Regressor (GPR) [10] and Bayesian Neural Network (BNN) [11], which uncertainty estimates, Support Vector
Regressor (SVR) [9], Random Forest (RF) [30] , K-Nearest-Neighbors (KNN) [31], Decision Tree Regressor
(DTR) [32], eXtreme Gradient Boosting (XGB) [33], Gradient Boosting Machine (GMB) [34] and Light-GBM
[35].

As commonly used in machine learning studies, the dataset has been divided into training and test shot sets. The
DTE2-3 dataset included 101 discharges, out of which 11 were left out for testing. All the machine learning models
reached good performance in the regression task, achieving R? > 0.95, as demonstrated in TABLE2.

Figure 2 shows on the left, as an example, the capability of the BNN model in predicting the R, within 95%
confidence level in the 99951 high performance baseline plasma with 3 MA plasma current and 2.8 T toroidal
magnetic field. The R? value reached is quite good, around 0.987, and 95% confidence interval remains tight
throughout the main heating phase, reflecting the reliability of the surrogate model. The scatter plot, on the right
part of the figure, further demonstrates the excellent correlation between measured and reconstructed values,

confirming the consistency of the surrogate across the test set.

These results demonstrate that the ML methods applied in this study can accurately reconstruct missing neutron
rate data. When integrated into the plasma control system, these methods can act as monitors for detecting
underperforming plasmas.

4. APPLICATION OF THE SURROGATE Rnyr MODEL TO JET DTE1 AND TFTR HIGH PERFORMANCE
DISCHARGES

ML models developed from the DTE2 and the DTE3 datasets were applied to predict the performance DTEI and
TFTR discharges. The goal of this analysis was to evaluate the portability of these models to another devices in
preparation for future DT experiments. The DTE1 database was selected because, during that campaign, JET
operated with a different wall conditioning and wall/divertor materials with respect to DTE2 and DTE3
campaigns, and limited auxiliary heating, conditions that influenced the neutron rate. On the other hand, TFTR
used the same fuel, but with different fuel mix, and featured a different neutral beam injection angle, beam voltage
and relatively peaked density profiles, both of which impact neutron production.

Representative results are shown in Figure 3 for a JET DTE1 discharge, on the left and for a TFTR discharge, on
the right. While the models retain some predictive capability, clear systematic deviations arise, especially for
TFTR, where predicted rates consistently underestimate the measurements. Predictive intervals widen
considerably in these cases, signaling the increased model uncertainty.
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The reduced performance on DTE1 and TFTR can be traced to distribution shifts in input features (see

conclusions).
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FIG. 3: “Zero shot” BNN reconstructions for (a) a JET DTEI and (b) a TFTR discharges using the model trained on DTE2-
DTE3.

5. DESIGN OF A DUD DETECTOR BASED ON THE THERMAL NEUTRON RATE
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FIG. 4. Neutron rate as a function of time from measurement (black), together with TRANSP run calculations of the beam-
target (blue), beam-beam (green), and thermal (red) contributions, as well as their sum (orange). The signal in magenta
represents the offline-calculated thermal neutron rate content. The data on the left refer to the JET 99950 Hybrid DT plasma
and its corresponding TRANSP K87 run, while the data on the right refer to the TRTR 80539 Super shot and its corresponding
TRANSP A22 run.

In the context of developing novel dud detectors, neutron production contributions in DT plasmas have been
analyzed using data from JET and TFTR, including outputs from the TRANSP code [36], which models beam—
beam, beam—target, and thermal neutron contents.

Figure 4 presents examples from this analysis: the neutron rate in the #99950 JET Hybrid discharge alongside its
K87 TRANSP simulation, and the #80539 TFTR Super shot with the corresponding A22 TRANSP run. The
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thermal neutron rate has also been evaluated offline using the formulation proposed in [28, 29], i.e. RIre™ =
npny < ov >, which successfully reproduces the thermal neutron content predicted by TRANSP.

This capability supports the design of a dud detector dedicated to monitoring neutron production from thermal
fusion reactions. Such a detector has been incorporated into the Simulink framework shown in Figure 5, with
potential application to future burning plasma control.

inputs react_prof_calculation outputs

ION_TEMPERATURE > —_—

u >
in_ion_temperature COEFF(3) X
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u v*
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FIG. 5. Design of a novel dud detector based on thermal neutron rate calculation.

6. CONCLUSIONS

As far as the reconstruction via ML surrogate modeling is concerned, the reduced performance in extrapolating
on JET DTEI and TFTR can be traced to distribution shifts in input features. Figure 6 compares the distributions
of key plasma parameters (NBI, T, density, stored energy, isotope fractions) across DTE2-3, DTEI1, and TFTR
datasets.

Distinct differences are evident: TFTR discharges populate regions of feature space scarcely represented in the
JET training set, while DTE1 also shows systematic offsets relative to DTE2-3. Such out-of-distribution inputs
explain the broader predictive intervals and highlight the value of uncertainty-aware models in identifying
extrapolation regimes.

In conclusion, GPR and BNN emerge as the most promising surrogate approaches, combining excellent regression
accuracy with principled uncertainty quantification. These methods demonstrate readiness for deployment in
plasma control systems at JET-like conditions, while their performance on DTE1 and TFTR underscores the

importance of addressing portability challenges through future work on domain adaptation and transfer learning.
The GPR model was optimized via Bayesian optimization, while BNN training in PyTorch proved
computationally more efficient, making it well suited for fast simulators and integrated modelling. Equivalent
results were obtained with a JAX implementation, which exploits automatic differentiation and provides efficient
runtimes on CPUs and GPUs, enabling “faster-than-real-time” simulations in many scenarios.

ACKNOWLEDGEMENTS

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European
Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 EUROfusion).
Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the
European Union or the European Commission. Neither the European Union nor the European Commission can



TAEA-CN-316/INDICO ID

be held responsible for them. As shown here: https://users.euro-fusion.org/publications/fp9/. The views and
opinions expressed herein do not necessarily reflect those of the ITER Organization.

Feature Distribution Comparison: Training vs Test Sets
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FIG. 6: Feature distribution histograms comparing DTE2 and DTE3 (in blue), DTE1 (in red), and TFTR (in green) datasets.
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