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Abstract 

In future fusion reactors, measuring the neutron production rate from Deuterium-Tritium (DT) fusion reactions will be 

crucial as it indicates fusion performance. To optimize Tritium consumption and limit neutron activation, a support function 

included in the plasma control system called a dud detector will trigger an alarm if the plasma fails to achieve expected fusion 

performance. This function has been developed and routinely employed at JET during DT campaigns. This study presents 

advanced dud detectors that build upon experience from JET DT operations and incorporate machine learning methods. 
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Towards DT operations in BEST, ITER and SPARC, we have investigated the portability and the inherent limitations of these 

new detectors by analyzing similar Deuterium-Tritium experiments conducted at TFTR. 

1. INTRODUCTION 

Fusion reactors will be the most intense and powerful sources of fast neutrons. Indeed, each Deuterium-Tritium 

(DT) reaction will produce a 3.5 MeV energetic helium atom and a 14.1 MeV neutron. While the charged Helium 

is confined within the plasma, where it contributes to plasma heating thanks to Coulomb collisions, the neutron 

will escape toward the wall of the plasma chamber.   

In the blanket, neutrons will slow down and release thermal power that will produce electrical power, via a two-

loop cooling circuit, and will breed tritium, by reacting with Lithium6  and Lithium7.   

The counting of 14.1 MeV neutrons produced by fusion reactions per second, known as the neutron rate (Rnt), will 

be one of the most important metrics in a burning plasma, as it directly measures the device's efficiency in energy 

and Tritium production. 

Nevertheless, this is not the only reason why the neutron measurements [1] are of special interest for fusion 

devices. Neutron diagnostics play also a crucial role in determining the plasma composition, i.e. the deuterium-

tritium fuel ratio, the ion temperature and density [2]. Neutron emission can also be useful to monitor plasma 

position, its extend and shape [3]. This requires measurements of spatial emission profiles, so that neutron 

emissivity distribution can be reconstructed using special tomographic methods. 

In future burning plasma fusion devices, the neutron rate will be exploited in real-time to determine whether the 

discharge is behaving as expected or should be terminated, because the plasma is not reaching the target fusion 

power due to an abnormal event related to the plasma itself or a system fault. 

In this context, at the Joint European Torus (JET) device, already in its first DT campaign, named the DTE1, 

which took place in 1997, to save the limited neutron and tritium budgets, a controller, named dud detector,  had 

been used that monitored whether the neutron rate remained above a predetermined curve [4]. In the DTE2 

campaign, which took place in 2021, a more sophisticated dud detector algorithm has been exploited in real-time 

to detect underperforming baseline plasmas [5-7]. The algorithm relied on performance metrics, i.e. the neutron 

rate normalized to the plasma stored energy to the square (Rnt/Wp
2) and the H98,  the ratio between the energy 

confinement time and the expected energy confinement time from the empirical, multi-machine energy 

confinement time scaling law [5].  

However, over 16 deuterium-tritium baseline plasmas, as documented in [7], the dud detector raised a false 

positive alarm due to a failure in the real-time Rnt signal.  This could have been avoided if multiple neutron rate 

signals from various neutron diagnostics had been available in real-time. This approach ensures a degree of 

redundancy, which can help account for potential problems within the diagnostic equipment itself and/or in the 

acquired signals. Another strategy to avoid this kind of issue is to rely on a real-time machine learning (ML) 

model, which can generate synthetic neutron rate data, as proposed in [8].  

In this paper, we present a first-of-its-kind surrogate model that predicts the time evolution of the neutron 

production. Such a model has been developed considering JET DT discharges performed during DTE2 and the 

recent DTE3 campaign, carried out in 2023. Various ML methods, such as  Support Vector Regressor (SVR) [9], 

Gaussian Process Regression (GPR) [10],  Bayesian Neural Network (BNN) [11], have been  considered and the 

one which shows to be most robust and reliable in supplementing missing Rnt data is the GPR method. An excellent 

accuracy, about 98.3% of the coefficient of determination (R2) has been achieved. Besides this purpose, the ML 

model’s capability in forecasting the neutron production can be deployed for real-time monitoring the plasma 

performance.  

The experience gained during JET DT operations also allows the design of novel dud detectors which rely, for 

example on the thermal neutron rate calculations. The applicability of these new dud detection methods, including 

the one based on machine learning, has been tested against (Tokamak Fusion Test Reactor) TFTR data [12] in 

preparation to next future DT experiments in BEST, ITER and SPARC. 

The paper is structure as follows: in section II the neutron rate features in JET DT plasmas are described, in 

Section III the machine learning approaches for synthetic neutron rate model identification are presented, together 

with the quality assessment of the generated data with the original data, in Section IV the insights that have been 

gathered in this work are discussed together with the application of the surrogate machine learning models in 

reproducing the neutron rate in DTE1 and DT-TFTR plasmas. In Section V, the design of a novel dud detector 

based on the thermal neutron production is presented. Section VI provides the conclusions. 
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2. NEUTRON RATE IN JET AND TFTR DEUTERIUM-TRITIUM PLASMAS 

                          

FIG. 1. Neutron rate as a function of stored energy to the square in (a) JET DT plasmas and (b) TFTR DT plasmas. The color 

code has been used to distinguish the various scenarios explored during DT operations. 

During DTE2 and DTE3 campaigns, plasma dynamics were investigated in three main plasma scenarios, which 

have been carefully optimized over the last decades to maximize fusion performance, to study the critical physics 

issues associated with DT fuel and alpha-particles, to test burning plasma controllers and to extrapolate the 

knowhow towards ITER and the next step magnetic fusion devices.  

These scenarios are known as the hybrid, baseline, and advanced tokamak and all used a 50/50 D/T ratio [13]. 

The hybrid scenario produced most neutrons per MJ of plasma stored energy by operating in low density, high 

temperature plasma regimes [14, 15], while the baseline scenario achieved high neutron rate by reaching the 

highest plasma stored energy, by operating at high plasma current, up to 4 MA [16, 17]. Conversely, the advanced 

tokamak scenario used a combination of high plasma current and magnetic field with internal transport barriers 

formation  to achieve the high neutron rate [18].  

For these different DT plasma scenarios the neutron rate, measured by three 235U/ 238U fission chambers located 

outside the vacuum vessel [2], is reported in Figure1(a) as a function of the stored energy to the square. Hybrid 

plasmas are reported in red, baseline plasmas in blue, and advanced tokamak plasmas in green. The same figure 

also includes hybrid plasmas with a Tritium rich content, which was approximately 15/85 D/T mixture instead of 

50/50 D/T [19, 20]. This dataset is represented in magenta. Additionally, the figure includes data points for 

experiments conducted at low plasma current, toroidal magnetic field and auxiliary power, which were part of 

burning plasma control studies [21, 22].  

Note that the slope of Rnt versus Wp
2 varies depending on the plasma scenario. This variation reflects the different 

approaches to achieving fusion production in each scenario, as previously aforementioned. This feature has been 

exploited as a performance metric for dud detection in baseline plasmas, as documented in [5, 7]. 

The same analysis reported in Figure 1(a) has been carried out for DT plasmas performed in TFTR from 1993 to 

1997. As at JET, the neutron rate was measured by 235U detectors [23]. 

DT TFTR experiments explored various plasma scenarios, including super-shot, advanced tokamak, high-li and 

moderate-li [12, 24-27]. The super-shots demonstrated enhanced confinement and performance, thanks to the 

strong beam particle fueling of the plasma core, peaked density profiles, high ion temperature in the core, around 

2-4 times the electron temperature. Additionally, lithium coating was used to further suppress the influx of 

deuterium and carbon [26]. The advanced tokamak plasmas were characterized by reversed shear near the plasma 

core accomplished by ramping up the plasma current to create a hollow current profile, coupled with a staged 

neutral beam injection power profile, strongly peaked electron density profile, and significant bootstrap current. 

TFTR also investigated other methods to enhance confinement and fusion production. The high-li scenario 

involved peaking the current density profile by manipulating plasma current growth or ramp-down, leading to a 

temporary increase in plasma internal inductance. A less extreme approach, known as the moderate-li regime, 

involved rapidly increasing the plasma minor radius just before neutral beam injection. 
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Figure 1(b) shows the behavior of the neutron rate as a function of the squared stored energy in TFTR discharges, 

considering the various scenarios described previously. Note that, differently from JET, there is less variation in 

the Rnt versus Wp
2 in the TFTR DT database. This is associated with the fact that all TFTR discharges had 

relatively peaked pressure profiles. 

 

3. SURROGATE MODELS FOR NEUTRON RATE 

JET plasmas performed during the DTE2 and DTE3 have been analyzed with the purpose of developing new dud 

detectors in preparation for upcoming DT experiments in BEST, ITER and SPARC. The new detectors, based on 

machine learning models and straightforward analytical formulas, can be used for supplementing missing Rnt data 

and for distinguishing between well-performing plasmas and duds. 

For this purpose, a dataset containing 101 DTE2/DTE3 discharges has been created including data collected 

during the main heating phase of DTE2 and DTE3 discharges. Table 1 presents the key plasma parameters of the 

main plasma scenarios described in the previous Section. Importantly, the database also includes DT plasmas 

operating below full power. This deliberate inclusion of lower-performance data ensures the dataset encompasses 

a wide range of neutron rate outputs, enhancing its utility for dud detection. 

 

TABLE 1. Main JET DT plasma parameters in the various scenarios analyzed. 

 

Scenario Ip (MA) Bt (T) Density (m-3) 

Hybrid                                         2.3 3.43 2-6 

Baseline                                        3/3.5/3.8                                                 2.8/3.35/3.6 2-8/2-8 

Advanced   Tok.                                        2.5                                                 3.8 1.5-3 

Tritium-rich                             2.45 3.85  2-6 

Plasma Control            1.4                                               1.8                     3-4 

 

The features that have been included when creating the dataset are the auxiliary heating power, the core 

electron temperature from Electron Cyclotron Emission diagnostic (Te), the electron density from 

interferometer (ne), the Deuterium and Tritium mixture from passive spectroscopy, the Deuterium density 

(nD) and Tritium density (nT), the stored energy, the neutron rate and the reactivity < 𝝈𝒗 > defined as 

𝟑. 𝟔𝟖 𝟏𝟎−𝟏𝟖𝑻𝒆−𝟐/𝟑𝒆−𝟏𝟗.𝟗𝟒𝑻𝒆−𝟏/𝟑
 [28, 29].  

TABLE 2. Summary of the model performance in the regression task. 
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FIG. 2. (a) Neutron rate as a function of time from measurement (in blue), from BNN model prediction (in orange) and the 

grey shaded region represents the 95% confidence interval. (b) Normalized density plot with normalized with predicted vs true 

measurements values.  

 

Several machine learning methods have been evaluated for the regression task of reconstructing Rnt, most of which 

were instance-based and did not account for temporal dependencies. The models included the Gaussian Process 

Regressor (GPR) [10] and Bayesian Neural Network (BNN) [11], which uncertainty estimates, Support Vector 

Regressor (SVR) [9],  Random Forest (RF) [30] , K-Nearest-Neighbors (KNN) [31], Decision Tree Regressor 

(DTR) [32], eXtreme Gradient Boosting (XGB) [33], Gradient Boosting Machine (GMB) [34] and Light-GBM 

[35]. 

As commonly used in machine learning studies, the dataset has been divided into training and test shot sets. The 

DTE2-3 dataset included 101 discharges, out of which 11 were left out for testing. All the machine learning models 

reached good performance in the regression task, achieving R² > 0.95, as demonstrated in TABLE2.  

Figure 2 shows on the left, as an example, the capability of the BNN model in predicting the Rnt within 95% 

confidence level in the 99951 high performance baseline plasma with 3 MA plasma current and 2.8 T toroidal 

magnetic field. The R2 value reached is quite good, around 0.987, and 95% confidence interval remains tight 

throughout the main heating phase, reflecting the reliability of the surrogate model. The scatter plot, on the right 

part of the figure, further demonstrates the excellent correlation between measured and reconstructed values, 

confirming the consistency of the surrogate across the test set. 

These results demonstrate that the ML methods applied in this study can accurately reconstruct missing neutron 

rate data. When integrated into the plasma control system, these methods can act as monitors for detecting 

underperforming plasmas. 

 

4.  APPLICATION OF THE SURROGATE RNT MODEL TO JET DTE1 AND TFTR HIGH PERFORMANCE 

DISCHARGES 

ML models developed from the DTE2 and the DTE3 datasets were applied to predict the performance DTE1 and 

TFTR discharges. The goal of this analysis was to evaluate the portability of these models to another devices in 

preparation for future DT experiments. The DTE1 database was selected because, during that campaign, JET 

operated with a different wall conditioning and wall/divertor materials with respect to DTE2 and DTE3 

campaigns, and limited auxiliary heating, conditions that influenced the neutron rate.  On the other hand, TFTR 

used the same fuel, but with different fuel mix, and featured a different neutral beam injection angle, beam voltage 

and relatively peaked density profiles, both of which impact neutron production.  

Representative results are shown in Figure 3 for a JET DTE1 discharge, on the left and for a TFTR discharge, on 

the right. While the models retain some predictive capability, clear systematic deviations arise, especially for 

TFTR, where predicted rates consistently underestimate the measurements. Predictive intervals widen 

considerably in these cases, signaling the increased model uncertainty. 
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The reduced performance on DTE1 and TFTR can be traced to distribution shifts in input features (see 

conclusions).  

 

FIG. 3: “Zero shot” BNN reconstructions for (a) a JET DTE1 and (b) a TFTR discharges using the model trained on DTE2-

DTE3. 

 

 

5. DESIGN OF A DUD DETECTOR BASED ON THE THERMAL NEUTRON RATE 

 

FIG. 4. Neutron rate as a function of time from measurement (black), together with TRANSP run calculations of the beam-

target (blue), beam-beam (green), and thermal (red) contributions, as well as their sum (orange). The signal in magenta 

represents the offline-calculated thermal neutron rate content. The data on the left refer to the JET 99950 Hybrid DT plasma 

and its corresponding TRANSP K87 run, while the data on the right refer to the TRTR 80539 Super shot and its corresponding 

TRANSP A22 run. 

In the context of developing novel dud detectors, neutron production contributions in DT plasmas have been 

analyzed using data from JET and TFTR, including outputs from the TRANSP code [36], which models beam–

beam, beam–target, and thermal neutron contents. 

Figure 4 presents examples from this analysis: the neutron rate in the #99950 JET Hybrid discharge alongside its 

K87 TRANSP simulation, and the #80539 TFTR Super shot with the corresponding A22 TRANSP run. The 
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thermal neutron rate has also been evaluated offline using the formulation proposed in [28, 29], i.e. 𝑅𝑛𝑡
𝑇ℎ𝑒𝑟 = 

𝑛𝐷𝑛𝑇 < σv >, which successfully reproduces the thermal neutron content predicted by TRANSP. 

This capability supports the design of a dud detector dedicated to monitoring neutron production from thermal 

fusion reactions. Such a detector has been incorporated into the Simulink framework shown in Figure 5, with 

potential application to future burning plasma control. 

 

FIG. 5. Design of a novel dud detector based on thermal neutron rate calculation. 

6.  CONCLUSIONS 

As far as the reconstruction via ML surrogate modeling is concerned, the reduced performance in extrapolating 

on JET DTE1 and TFTR can be traced to distribution shifts in input features. Figure 6 compares the distributions 

of key plasma parameters (NBI, Te, density, stored energy, isotope fractions) across DTE2–3, DTE1, and TFTR 

datasets.  

Distinct differences are evident: TFTR discharges populate regions of feature space scarcely represented in the 

JET training set, while DTE1 also shows systematic offsets relative to DTE2–3. Such out-of-distribution inputs 

explain the broader predictive intervals and highlight the value of uncertainty-aware models in identifying 

extrapolation regimes.  

In conclusion, GPR and BNN emerge as the most promising surrogate approaches, combining excellent regression 

accuracy with principled uncertainty quantification. These methods demonstrate readiness for deployment in 

plasma control systems at JET-like conditions, while their performance on DTE1 and TFTR underscores the 

importance of addressing portability challenges through future work on domain adaptation and transfer learning.  

The GPR model was optimized via Bayesian optimization, while BNN training in PyTorch proved 

computationally more efficient, making it well suited for fast simulators and integrated modelling. Equivalent 

results were obtained with a JAX implementation, which exploits automatic differentiation and provides efficient 

runtimes on CPUs and GPUs, enabling “faster-than-real-time” simulations in many scenarios. 
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FIG. 6: Feature distribution histograms comparing DTE2 and DTE3 (in blue), DTE1 (in red), and TFTR (in green) datasets. 
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