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Abstract

Turbulent transport greatly impacts the performance of stellarator magnetic confinement devices. While significant
progress has been made on the numerical front, theoretical understanding of turbulence in stellarators is still lacking. In
particular, due to nonaxisymmetry, different field lines couple within flux surfaces, the effects from which have yet to be
adequately studied. The paper numerically simulate the linear electrostatic ion-temperature-gradient modes in stellarators
using the global gyrokinetic particle-in-cell code GTC. It is found that the linear eigenmode structures are nonuniform across
field lines on flux surfaces and are localized at the downstream direction of the ion diamagnetic drift. Based on a simple model
from Zocco et al., the paper shows that the localization can be explained from the nonzero imaginary part of the binormal
wavenumber. It is further demonstrated that a localized surface-global eigenmode can be constructed from local gyrokinetic
codes stella and GX, if one first solves the local dispersion relation with real wavenumbers at each field line, and then do
an analytic continuation to the complex-wavenumber plane. These results suggest that the complex-wavenumber spectra from
surface-global effects are required to understand the linear drift-wave eigenmode structures in stellarators.

1. INTRODUCTION

Turbulent transport significantly impacts the performance of stellarator magnetic confinement devices. For exam-
ple, in the Wendelstein 7-X (W7-X) device, the ion-temperature-gradient (ITG) turbulence is believed to limit the
achievable core ion temperature in electron-cyclotron-resonance-heated plasmas [1]. It is well known that plasma
microturbulence is highly anisotropic in magnetic confinement devices, l∥ ≫ l⊥, where l∥ (l⊥) is the character-
istic wavelength along (across) the magnetic fields B. Therefore, fluctuating quantities such as the electrostatic
potential Φ can be written as Φ̂(ψ, α, l)S(ψ,α)/ρ∗ , which consists of a rapidly varying phase factor eiS/ρ∗ and a
slowly varying envelope Φ̂. Here, ψ is the flux-surface label, α is the field-line label, l is the distance along field
lines, and ρ∗ = ρi/a is a small parameter with ρi the ion gyroradius at thermal velocity and a the minor radius of
the device. Stellarators are nonaxisymmeric and the turbulent fluctuation level generally depends on both l and α.
(We focus on the fluctuation level within flux surfaces, so that the dependence on ψ will not be discussed in this
paper.) Such dependence could come from either the local effects, where the local geometric quantities vary with
α, or the global effects, where fluctuations at different α couple together. To fully exploit the local effects, several
flux tubes at different α, or a single flux tube with several poloidal turns, are often required for local simulations.

Despite the efforts in predicting turbulent transport from local simulations, there are open questions regarding
the observed discrepancy between local and global simulation results on the turbulent fluctuation level in stellara-
tors [2, 3]. For example, global gyrokinetic simulations found that the linear ITG eigenmodes are highly localized
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in α, which is a common phenomenon in quasi-isodynamic (QI) W7-X configurations [4, 5], as well as in quasi-
axisymmetric (QA) and quasi-helically symmetric (QH) configurations [6]. More recently, from global GENE-3D
simulations of ITG turbulence in W7-X [4, 5], the fluctuation level noticeably deviates from stellarator symmetry,
which local simulation results would always obey. Therefore, a careful study on the global effects is still needed.

In this work, we numerically simulate the linear electrostatic ITG eigenmodes in stellarators using the global
gyrokinetic particle-in-cell code GTC, and present a theoretical explanation for the observed mode structures.
We simulate the precise QA and the precise QH configurations reported in [7], as well as a W7-X high-mirror
configuration used in [8]. We find that the linear eigenmode structures are nonuniform in α on flux surfaces and
are localized at the downstream direction of the ion diamagnetic drift. Based on a simple model from Zocco [9,
10] and following the WKB theory of Dewar and Glasser [11], we show that the localization can be explained
from the nonzero imaginary part of kα. Focusing on the precise QA configuration, we further demonstrate that a
localized surface-global eigenmode can be constructed from local gyrokinetic codes stella [12] and GX [13],
if we first solve the local dispersion relation with real wavenumbers, and then do an analytic continuation to the
complex-wavenumber plane. These results suggest that the complex-wavenumber spectra from surface-global
effects are required to understand the linear drift-wave eigenmode structures in stellarators.

2. GTC SIMULATION OF GLOBAL LINEAR ITG EIGENMODE STRUCTURES

We use the global gyrokinetic particle-in-cell code GTC1 to simulate linear electrostatic ITG eigenmodes in stel-
larators. The code utilizes Boozer coordinates (ψ, θ, ζ), which are suitable for the nonaxisymmetric stellarator
simulations. We simulate gyrokinetic deuterium ions with mass mi = 2mp (mp is the proton mass) and charge
number Zi = 1. Electrons are assumed adiabatic. Consistent with the convention in local simulations, we define
the local density and temperature gradient scale lengths Ln = (aBa∂ψ lnni)

−1 and LT = (aBa∂ψ lnTi)
−1, and

refer to a/Ln and a/LT as the local gradients. Here, a is obtained from the quantity Aminor p of the VMEC
equilibria and Ba = ψa/(πa

2), where ψa is the value of the toroidal magnetic flux ψ at the outermost flux sur-
face. For our simulations we evaluate the ITG eigenmode structures in the region of constant temperature gradient
a/LT , while the density gradient is set to be zero, a/Ln = 0. In our simulations, we use 2000 grids in the poloidal
direction (about 40 grids per wave period), 40 radial grids in the domain 0.35 < r/a < 0.65, and require the elec-
trostatic potential δΦ to vanish at the radial boundaries. We simulate 15 toroidal planes spanning one field period
of the devices. Approximately 100 ions are simulated for each grid point in the 3D domain, and the simulation
time step size is t = 0.01R0/vti with R0 the toroidally averaged major radius of the magnetic axis.

FIG. 1. Left: the linear global ITG eigenmode structures in cylindrical coordinates (R, z) at toroidal Boozer
angle ζ = 0. Right: the same eigenmode structures in the field-line following coordinates (α, θ).

The ITG eigenmode structures at toroidal ζ = 0 are plotted in figure 1. The modes rotate counter-clockwise
in the direction of ion diamagnetic drift, while their amplitudes increase exponentially in time. Due to stellarator
symmetry, the configurations are up-down symmetric at ζ = 0. However, the mode structures are up-down asym-
metric, and are localized at the upper part of the plane, which is the downstream direction of the ion diamagnetic
drift. Also shown in figure 1 are the mode structures in the field-line following coordinates (α, θ) on the r/a = 0.5
flux surface, where α = θ − ιζ is the field-line label, ι is the rotational transform, and we use the poloidal angle
θ instead of the distance along field lines l as the parallel coordinate. It is seen that the mode structures do not

1https://sun.ps.uci.edu/gtc
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obey stellarator symmetry, which states that geometric quantities are the same at (α, θ) and (−α,−θ). Instead,
the modes are localized at α > 0, which results in the up-down asymmetry. We also found that the localization
becomes more pronounced at smaller ρ∗, as seen from the mode structures in the QA at a smaller ρ∗. This behavior
will be explained below, where we conclude that the localization increases exponentially with ρ−1

∗ .

3. THEORETICAL EXPLANATION FROM A SIMPLE MODEL

Zocco et al. proposed a simple model to study the mode structures across field lines [9, 10]. The model considers
the limit of large temperature gradient, a/LT ≫ 1, so that the ITG mode is concentrated at the bad-curvature
region along field lines and the θ-dependence of the mode structure is not considered. Then, the model becomes a
1D differential equation in α which describes the global eigenmode structures as well as their frequencies. Letting
y = α/ι so that y ∈ [−π, π], the mode structure Φ(y) is described from(

ω2 − ρ3∗gω∂
3
y − ρ2∗f∂

2
y

)
Φ(y) = 0. (1)

Here, ω is the eigenmode frequency, and g(y) and f(y) are functions of y that model the field-line dependent
stellarator geometry. An example of the solution is shown in figure 2 with ρ∗ = 0.05, f = 1, g = 1 − 0.2 cos y,
and the most unstable global eigenmode corresponds to ω = 0.66+0.89i. The mode is localized around y = π/2,
consistent with the GTC results of mode localization at α > 0. Zocco obtained a similar localized solution with
a different set of parameters more relevant to W7-X, again suggesting that the localization is a universal feature,
but a comprehensive understanding of this feature is still missing.

FIG. 2. Left: comparison of numerical and analytical solution of equation (1). Right (a) and (b): the real and
imaginary part of the global solution of ky . Right (c) and (d): the local frequency and growth rates versus real ky
at two different flux tubes y = 0 and y = π, as well as the global eigenmode frequency and growth rate.

In the following, we study the mode structure from a WKB analysis similar to Dewar and Glasser [11]. Since
Φ(y) = Φ̂(y)eiS(y)/ρ∗ , we replace ∂y with i∂yS/ρ∗ + ∂y , where ∂y no longer acts on the phase factor. To the
lowest order in ρ∗, equation (1) becomes

ω2 − gk3yω + fk2y = 0, ky(y) = ∂yS, (2)

which gives the local dispersion relation ω = ωl(ky, y). To the next order in ρ∗, we obtain an equation for the
envelope Φ̂:

∂yΦ̂

Φ̂
= −∂yky

ky

3gkyω − f

3gkyω − 2f
. (3)

Therefore, the global solution is Φ = eŜeiS/ρ∗ with

S(y) =

∫ y

0

ky(s)ds, Ŝ(y) = −
∫ y

0

∂sky(s)

ky(s)

3g(s)ky(s)ω − f(s)

3g(s)ky(s)ω − 2f(s)
ds. (4)

As shown in figure 2, the numerical solution of Φ is well approximated by the phase factor eiS/ρ∗ . The numerically
calculated envelope Φ̂ also agrees well with the next-order result eŜ . However, the variation in |Φ̂| is insignificant
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compared to the exponentially varying phase factor, and hence we conclude that the mode localization mainly
comes from the phase factor eiS/ρ∗ .

To understand the localization at y > 0, we solve for S from equations (2) and (4). Since ω is constant while f
and g vary in y (though f is constant for the example shown here), ky must vary with y too. Namely, we solve for
ky(y, ω) at given ω. The solution is shown in figure 2. The imaginary part of ky is nonzero, Im ky ≈ −0.05 cos y.
Consequently, the phase factor has a nonuniform amplitude,

|eiS/ρ∗ | ≈ e(0.05 sin y)/ρ∗ , (5)

which is localized around y = π/2. Therefore, the localization is due to the negative Im ky at y = 0 and increases
exponentially with ρ−1

∗ . The imaginary part of ky can be intuitively understood by approximately solving ky from
the first-order Taylor expansion:

ky ≈ ky0 +

(
∂ωl
∂ky

)−1

∆ω, ∆ω = ω − ωl. (6)

Since we are looking at the most unstable eigenmode where ∂(Imω)/∂ky ≈ 0, the sign of Im ky is determined by
the sign of [∂(Reω)/∂ky]−1Im∆ω. Therefore, we identify two reasons that lead to the negative Im ky at y = 0:
(i) the global eigenmode growth rate is smaller than the local growth rate at y = 0, Im∆ω < 0 (figure 2); and (ii)
the ion diamagnetic drift is defined to be in the positive-y direction, so that ∂(Reω)/∂ky > 0. In other words, if
the y = 0 flux tube gives the largest local ITG growth rate, then the localization of the ITG modes will occur at
the downstream side of the ion diamagnetic drift.

4. CONSTRUCTION OF A SURFACE-GLOBAL SOLUTION FROM LOCAL GYROKINETIC SIMULATION
RESULTS

FIG. 3. Comparison between results from local stella simulations and global GTC simulations. First row: the
local growth rates Imωl versus (kx, ky) at different α. The blue crosses indicate the most unstable local solution.
Second row: the eigenmode amplitudes |δΦ| versus θ, which are normalized to their maxima at each α.

Based on the results from above, we construct a surface-global solution from local gyrokinetic simulations,
and compare the results with the GTC solution. In particular, we focus on the precise QA configuration here.
First, we obtain the local dispersion relation ω = ωl(k, α) with real k = kr∇r + kα∇α. Then, we calculate
the complex k from first-order Taylor expansion, and construct a surface-global solution using the complex k.
Finally, we compare the constructed solutions with the GTC solutions.

We use local gyrokinetic codes stella [12] and GX [13] to obtain ωl(k, α) at the r/a = 0.5 flux surface.
For each field line α, we choose the flux tube to span one poloidal turn, θ ∈ [−π, π], so that different flux tubes are
simulated independently. After obtaining the local dispersion relation with real k, we look for complex k(α) such
that ωl(k(α), α) = ω is constant. Similar to the previous section, this is done from first-order Taylor expansion:

k(α) ≈ k0(α) +

(
∂ωl
∂k

)−1

∆ω, ∆ω = ω − ωl. (7)
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FIG. 4. Left (a) and (b): the real and imaginary parts of ω versus α at k = k0 from stella (blue solid curves)
and the calculated surface-global eigenmode frequency ω (black dashed line). Left (c) and (d): solution of ky
from first-order Taylor expansion (7). Right (a) and (b): The constructed surface-global solution (9) from local
stella solutions with (a) ρ∗ = 0.01 and (b) ρ∗ = 0.005.

Here, k0 = (kx0, ky0) is real, ω is the surface-global eigenmode frequency to be determined in the following,
and ωl and ∂kωl are evaluated at k = k0. The exact value of k0 is not important as long as it is close to k so
that equation (7) is valid. Note that both k and ∂kωl are 2D vectors and numerically we look for ∆k = k − k0

that minimizes |∆k · ∂kω −∆ω|. In other words, although local simulations only provide the information on the
real-k plane, we can still obtain the information on the complex-k plane from analytic continuation.

The local growth rates Imωl versus (kx, ky) from stella are plotted in the first row of figure 3, which shows
that the fastest growing modes correspond to nonzero kx. The most unstable modes are marked by the blue crosses
in the figure, and are approximately given by

kx0 = −0.5α/αmax, ky0 = 1.13− 0.175(α/αmax)
2. (8)

The mode amplitudes |δΦ(θ)| at k0 are shown in the second row of figure 3, where we also plot the GTC results.
Due to stellarator symmetry, the local results are symmetric with respect to the coordinate change (α, θ, kx) →
(−α,−θ,−kx). As shown in the figure, the local eigenmode structures qualitatively resemble the GTC results.
Note that the GTC solution is periodic in α, but the local solution (8) is not, which transitions from kx0 = 0.5 at
α/αmax = −1 to kx0 = −0.5 at α/αmax = 1. In fact, the GTC solution of |δΦ| has two peaks at α/αmax = ±1,
which appears to be a superposition of the two local solutions at kx0 = ±0.5. Therefore, the local solution
lives on an extended α space, α ∈ (−∞,∞), and the periodicity of the global solution can be recovered from a
superposition of the local solutions.

The local eigenmode real frequencies and growth rates at k = k0 are plotted in figure 4. To determine the
surface-global eigenmode frequency ω, we assume that the corresponding solution k from (7) satisfies

∫
dα Im ky =

0. The corresponding solutions for ky are also shown in the figure. In particular, Im ky is nonzero and is negative
at α = 0, which leads to the localization at α > 0.

Finally, with the complex k, we construct a surface-global solution as

δΦglobal(θ, α) = δΦlocal(θ;α, k0)e
iS(α)/ρ∗ , S =

∫
dα ky(α)r/a, (9)

where δΦlocal is the normalized local eigenmode structure from stella at k = k0 for each α. The results are
shown in figure 4 with ρ∗ = 0.01 and ρ∗ = 0.005, which are not periodic in α because we only consider one period
in α for the local solution. Nevertheless, the constructed solutions look similar to the GTC results in figure 1. The
increasing level of localization with decreasing ρ∗ is also reproduced as a direct consequence from the phase
factor in equation (9). We conclude that for the linear ITG mode structures in the stellarator configurations, many
features of the global GTC solution can be reproduced from the constructed surface-global solution, if we first
solve the local dispersion relation with real k, and then do an analytic continuation to the complex k.

5. CONCLUSIONS AND DISCUSSIONS

We numerically simulate the linear electrostatic ITG eigenmodes in stellarators using the global gyrokinetic
particle-in-cell code GTC, and present a theoretical explanation for the observed mode structures. We find that the
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linear eigenmode structures are localized at the downstream direction of the ion diamagnetic drift. Based on a sim-
ple model from Zocco et al. [9, 10] and following the WKB theory of Dewar and Glasser [11], we show that the
localization can be explained from the nonzero imaginary part of kα. Focusing on the precise QA configuration,
we further demonstrate that a localized surface-global eigenmode can be constructed from local gyrokinetic codes
stella and GX, if we first solve the local dispersion relation with real wavenumbers, and then do an analytic
continuation to the complex-wavenumber plane. These results suggest that the complex-wavenumber spectra from
surface-global effects are required to understand the linear drift-wave eigenmode structures in stellarators.

While the conclusions in this work are limited to the linear instabilities, they could be useful in interpreting
nonlinear simulation results. For example, the nonlinear fluctuation level of ITG turbulence in W7-X deviates
from stellarator symmetry [4, 5] and its localization is consistent with (although not as pronounced as) the linear
results. The linear and nonlinear thresholds for the ITG turbulence in a QA stellarator appears to lie above that of
the most unstable flux tube [14], which is also consistent with the conclusion that the global eigenmode growth
rate is below the most unstable flux tube. Quantitative studies of these effects, including whether the observed
surface-global effects can reduce the gap between local and global predictions on the turbulent transport, will be
the subject of future work.
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