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Abstract 

Predicting turbulent transport in fusion plasmas is essential for forecasting the performance of next-generation fusion reactors. 
This study presents a multi-fidelity modeling framework based on nonlinear autoregressive Gaussian process (NARGP) 
regression, combining high-fidelity experimental data with low-fidelity simulation results. By integrating a Neural Kernel 
Network (NKN) into the NARGP framework, our model captures complex nonlinear correlations across fidelity levels and 
achieves significantly improved extrapolative performance. The approach is validated on both synthetic benchmark problems 
and a real-world dataset from the Joint European Torus (JET), demonstrating its robustness and practical applicability in 
plasma transport modeling. 

1. INTRODUCTION 

Understanding and predicting turbulent transport remains a central challenge in magnetic confinement fusion 
research. In magnetically confined plasmas, microscopic turbulence dominates transport processes and directly 
impacts the plasma confinement performance. Therefore, the ability to quantitatively predict turbulent transport 
is essential for optimizing the design and operational scenarios of next-generation fusion devices. First-principles 
simulations based on gyrokinetic theory have been widely used as high-fidelity tools for capturing the physics of 
plasma turbulence [1]. While these simulations offer high accuracy, they require substantial computational 
resources, making it difficult to explore wide plasma parameter spaces comprehensively. In addition, although 
several validation studies based on first-principles simulations well explain the experimental results, there are 
sometimes quantitative discrepancies between simulation predictions and experimental observations. As 
alternatives, theory-based quasilinear models or machine learning surrogate models based on experimental data 
have also been actively investigated. Models grounded in experimental measurements are valuable because they 
reflect the actual behavior of operational devices. However, the availability of the training dataset is, of course, 
limited to the plasma parameter range within existing devices. 

In practice, transport predictions are most urgently needed for unexplored regions, such as those corresponding to 
future devices or high-performance regimes that have not yet been achieved experimentally. In these settings, the 
model’s extrapolative performance becomes critically important. However, existing models face significant 
challenges: the experiment-based surrogate model tends to exhibit poor generalization outside the training data. 
In contrast, the simulation-based model can be quantitatively insufficient, despite having the inherent advantage 
of theory-based extrapolation. 

To address these challenges, this study introduces a multi-fidelity data fusion framework for turbulent transport 
modeling. In this approach, low-fidelity data are abundant but less accurate, while high-fidelity data are accurate 
but sparse or only applicable to a limited parameter range. By jointly leveraging the complementary strengths of 
both and learning the correlations across fidelity levels, the proposed method aims to improve predictive 
performance in extrapolative regimes significantly. This work builds on previous demonstrations of multi-fidelity 
modeling for turbulent transport [1] and extends the methodology to target improved extrapolative capability. 
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2. METHODS 

2.1. Gaussian process regression 

Gaussian process (GP) regression [2] is a nonparametric Bayesian inference method that estimates the relationship 
between input variables X = {x0, x1, …, xn-1} and output variables Y = {y0, y1, …, yn-1}. In a GP regression 
framework, the output function y = f(x) is typically assumed to follow a zero-mean GP prior f ~ 𝒢𝒢𝒢𝒢(f | 0, k(x, x')) 
with a kernel (covariance) function k(x, x'). Under a given dataset X and Y, the posterior distribution of the 
response f* = f(x*) at a new input point x* is given by a normal distribution. Their posterior mean μ* and posterior 
variance σ*

2 are given by 
𝜇𝜇∗(𝒙𝒙∗) = 𝒌𝒌∗𝑇𝑇 ⋅ 𝐾𝐾�−1 ⋅ 𝜼𝜼, (1) 

𝜎𝜎∗2(𝒙𝒙∗) = 𝑘𝑘(𝒙𝒙∗,𝒙𝒙∗) − 𝒌𝒌∗𝑇𝑇 ⋅ 𝐾𝐾�−1 ⋅ 𝒌𝒌∗, (2) 
where k*i = k(x*,xi), Kij = k(xi, xj) + σ2δij and ηi = yi. In this way, GP regression models the correlation between 
inputs through the kernel function and simultaneously provides uncertainty estimates of the prediction within a 
Bayesian framework. 

2.2. Nonlinear auto-regressive Gaussian process regression 

Nonlinear auto-regressive Gaussian process (NARGP) regression [3] is a multi-fidelity method designed to 
improve predictive performance by integrating multiple datasets (X(t), Y(t)) with hierarchically different levels of 
fidelity (t = 0,1, …), although a standard GP regression treats the relationship between a single dataset of input X 
and output Y. The NARGP modeling procedure begins with applying a standard GP regression on the lowest-
fidelity dataset, from which the posterior prediction of the lowest-fidelity function f0(x) is obtained. Then, for the 
higher-fidelity data, a new GP is constructed as a function of the extended input space consisting of the original 
input x and the posterior prediction from the one-order lower-fidelity GP. Repeating this procedure enables the 
model to integrate multi-fidelity information in an auto-regressive structure recursively. Specifically, for the t-th 
fidelity function, 

𝑓𝑓𝑡𝑡(𝒙𝒙) = 𝑔𝑔𝑡𝑡�𝒙𝒙, 𝑓𝑓𝑡𝑡−1(𝒙𝒙)�, (3) 

𝑔𝑔𝑡𝑡 ∼ 𝒢𝒢𝒢𝒢 �𝑓𝑓𝑡𝑡 | 0,𝑘𝑘𝑡𝑡 ��𝒙𝒙, 𝑓𝑓𝑡𝑡−1(𝒙𝒙)�, �𝒙𝒙′,𝑓𝑓𝑡𝑡−1(𝒙𝒙′)��� , (4) 
where kt is the kernel function at the t-th fidelity dataset, defined in the extended input space (x, ft-1). In this work, 
we employ a separated-variable form of the kernel function proposed in Ref. [3], 

𝑘𝑘𝑡𝑡 = 𝑘𝑘𝑡𝑡𝑡𝑡(𝒙𝒙,𝒙𝒙′)𝑘𝑘𝑡𝑡𝑡𝑡�𝑓𝑓𝑡𝑡−1(𝒙𝒙), 𝑓𝑓𝑡𝑡−1(𝒙𝒙′)� + 𝑘𝑘𝑡𝑡𝑡𝑡(𝒙𝒙,𝒙𝒙′), (5) 
where ktρ, ktf, and ktw are kernel functions having different hyperparameters.  

2.3. Kernel functions 

It is well known that the performance of GP regression is highly sensitive to the choice of kernel functions. The 
design of the kernel function essentially defines the prior assumptions about the types of functions the model 
considers plausible, directly specifying properties such as smoothness, linearity, and periodicity. Therefore, 
selecting an appropriate kernel structure is fundamentally important for enhancing both the interpretability and 
predictability of GP models. Since the central importance of the present study is an extrapolative prediction, it is 
desirable to use a kernel capable of simultaneously representing both short-term variations and long-term trends 
[2]. Accordingly, automatic learning or flexible construction of kernel structures has been explored [4,5]. 

In this study, we consider and compare the following types of kernel functions: 
(a) Radial basis function (RBF) kernel 

The RBF kernel is one of the most widely used kernels, 

𝑘𝑘(𝒙𝒙,𝒙𝒙′) = 𝜎𝜎𝑟𝑟2 exp �−
1
2
�𝑤𝑤𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′)2
𝑑𝑑−1

𝑖𝑖=0

� ,  (6) 

where σr² represents the variance parameter, and wi corresponds to the relevance (inverse length scale) in each 
direction of the d-dimension input vector x. 

(b) Spectral mixture (SM) kernel 
The SM kernel is constructed based on a Gaussian mixture model in the frequency domain and is theoretically 
capable of approximating any stationary kernel [6,7]. 

𝑘𝑘(𝒙𝒙,𝒙𝒙′) = �𝑤𝑤𝑞𝑞

𝑄𝑄−1

𝑞𝑞=0

cos �2𝜋𝜋𝝁𝝁𝑞𝑞 ⋅ (𝒙𝒙 − 𝒙𝒙′)� exp�−2𝜋𝜋2�𝑣𝑣𝑞𝑞,𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′)2
𝑑𝑑−1

𝑖𝑖=0

� , (7) 
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where wq, μq, and vq denote the weight, frequency, and mean relevance of each spectral component. Increasing 
the number of mixture components Q allows for approximation of more complex structures. We set Q = 20 in 
the following analysis. 

(c) Neural kernel network (NKN) 
NKN is a framework that composes kernel functions using a neural network architecture [8]. In NKN, the first 
layer defines a set of basic kernels, such as RBF, linear, or periodic kernels. These kernels are then composed 
using a combination of additive and multiplicative operations, respectively, in linear and product layers. Each 
layer's output remains a valid kernel, ensuring the overall model retains the properties required for kernel-
based learning. This architecture enables the automatic learning of rich kernel structures directly from data. In 
the following analysis, we employ eight primitive kernels (two RBF, two linear, two periodic, and two rational 
quadratic functions, which are instantiated with different initial hyperparameters) as the first layer, and 
construct the subsequent architectures by stacking three linear layers and two product layers alternately. 

3. RESULTS 

3.1. Importance of kernel design in single-fidelity Gaussian process regression 

We first applied GP regression to a single-fidelity dataset to examine how kernel design affects extrapolation 
performance. As a benchmark dataset, we used the time series of atmospheric CO2 concentrations measured at 
Mauna Loa, which is publicly available in the OpenML repository [9]. This dataset is widely used as a canonical 
example because it exhibits multiple temporal scales of short-term seasonal fluctuations and a long-term trend. 

Figure 1(a) shows the regression results using an RBF kernel with a long correlation length. While the long-term 
increasing trend is well captured, the model fails to reproduce the short-term seasonal oscillations. In this case, 
the GP model absorbs the short-term variations into the noise term and thus does not effectively utilize the 
available information for prediction. Conversely, when using an RBF kernel with an artificially short correlation 
length, as shown in Fig. 1(b), the model can capture the short-term oscillations but fails to represent the long-term 
trend in the extrapolated region. These results highlight a fundamental limitation of single-scale kernels: they are 
unable to simultaneously model both short- and long-term structures, which poses a critical challenge for 
extrapolation tasks.  

To overcome this limitation, we tested general-purpose kernels such as the SM kernel and NKN, both of which 
can represent multiple correlation scales. These kernels successfully captured both the short-term oscillations and 
the long-term trend, thereby significantly improving extrapolation performance. In our numerical experiments, 
the SM kernel demonstrated sufficient expressive power; however, it was also sensitive to initialization and prone 
to convergence issues, particularly in capturing the long-term trend [Fig. 1(c)]. In contrast, the NKN model 
demonstrated more robust training behavior and consistently reproduced both short- and long-term features across 
extrapolative test data [Fig. 1(d)]. Based on these findings, we adopt the NKN as the primary general-purpose 
kernel in the following sections and evaluate its effectiveness through comparisons with the baseline RBF kernel.  

These results clarify the importance of kernel design in extrapolative regression tasks. Complex and flexible 
kernels that can express multiple correlation scales are fundamentally important for extrapolation prediction in 
GP regressions. 

 

FIG. 1. Extrapolative prediction of the Mauna Loa CO2 dataset by using single-fidelity GP regression with 
different kernels: (a) RBF kernel with the length scale l = w-1 = 107.2, (b) RBF kernel with the length scale l = 
0.5, (c) SM kernel, and (d) NKN kernel. 
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3.2. Multi-fidelity extrapolative prediction of a one-dimensional test function 

To evaluate the effectiveness of multi-fidelity regression, we compare the conventional single-fidelity GP 
regression and multi-fidelity NARGP regressions in a one-dimensional test function problem. Here, we define the 
low-fidelity function fl(x) by the Airy function and the high-fidelity function fh(x) as a nonlinear transform of it: 

𝑓𝑓l(𝑥𝑥) = 2Ai(−2𝜋𝜋𝜋𝜋), (8) 
𝑓𝑓h(𝑥𝑥) = �𝑥𝑥 − √2�𝑓𝑓l2(𝑥𝑥). (9) 

For the training dataset, we employed 100 equidistant sample points of fl(x) over the entire input domain 0 ≤ x < 
2, providing a sufficient representation of the low-fidelity function profile. In contrast, the high-fidelity data 
consists of only 15 randomly sampled points of fh(x), and no data is available in the region x > 1.25, which therefore 
constitutes an extrapolation problem for the high-fidelity function. 

We first performed the conventional single-fidelity GP regression using only the high-fidelity data with an RBF 
kernel, as shown in Fig. 2(a). While the model provides a good fit within the training domain, its predictive 
accuracy in the extrapolated region x > 1.25 significantly degrades, making reliable estimation difficult. Next, we 
applied an NKN as the kernel of the single-fidelity GP regression, as shown in Fig. 2(b). NKN constructs a 
composite kernel from a set of base kernels, thereby offering a certain degree of expressiveness. However, the 
high-fidelity function fh(x) exhibits non-stationary oscillations with gradually varying frequency, which makes it 
difficult for the NKN to represent the function structure effectively. While the model still provides a reasonable 
fit within the training range, it does not improve extrapolation performance outside of this range. This result 
highlights that increasing kernel expressiveness alone is insufficient to guarantee extrapolation accuracy. 

In contrast, the application of NARGP leads to significantly improved predictions even in the extrapolated region, 
as shown in Fig. 2(c). This is achieved by modeling the high-fidelity function in the extended input space, fh(x) = 
gh(x, fl(x)), effectively leveraging the correlation structure between fidelity levels. As shown in the figure, the 
high-fidelity function in terms of the input parameter x exhibits the complex oscillation fh(x). In the NARGP 
expression, such an oscillatory behavior is primarily captured through the oscillatory structure of the low-fidelity 
function fl(x), whereas the high-fidelity function in the extended input space, gh(x, fl), is relatively smooth. Thanks 
to the smoothness of the function gh with respect to x, NARGP makes the extrapolation plausible. 

Through this transformation, NARGP simplifies the underlying functional dependence of the target quantity. We 
here refer to this effect as "dependence simplification." This one-dimensional example demonstrates that NARGP 
enables high-accuracy predictions in extrapolated regions by exploiting the correlation between low-fidelity and 
high-fidelity datasets, and hopefully reduces the complexity of the regression problem through an appropriate 
embedding in the extended input space. 

 

FIG. 2. Extrapolative prediction of a one-dimensional problem. (a) Single-fidelity GP regression with an RBF 
kernel, (b) Single-fidelity GP regression with an NKN kernel, and (c) NARGP with an NKN kernel. 

3.3. Multi-fidelity extrapolative prediction of a two-dimensional test function 

We next examine an extrapolation scenario using a two-dimensional test function. In this case, the high-fidelity 
function fh(x0, x1) is defined as an axisymmetric Bessel function, while the low-fidelity function fl(x0, x1) is its 
envelope approximation, 

𝑓𝑓𝑙𝑙(𝑥𝑥0, 𝑥𝑥1) = 1−𝑟𝑟2/4
1+𝑟𝑟4

+ � 2
𝜋𝜋|𝑟𝑟|

𝑟𝑟4

1+𝑟𝑟4
, (10) 
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𝑓𝑓ℎ(𝑥𝑥0, 𝑥𝑥1) = 𝐽𝐽0(𝑟𝑟), (11)
where J0 is the zeroth-order Bessel function and 𝑟𝑟 = �𝑥𝑥02 + 𝑥𝑥12. Sampling points for training data is shown in Fig. 
3 (a). The high-fidelity data is restricted to the region x0 < 0, and there are no data points available for x0 > 0. 
Therefore, any prediction in the region x0 > 0 corresponds to an extrapolation problem with regard to the high-
fidelity function. However, in the multi-fidelity framework, we assume that the low-fidelity function fl(x0, x1) is 
available over a whole range of x0 < 0 and x0 > 0. 

First, we performed conventional single-fidelity GP regression with an RBF kernel using only the high-fidelity 
data in Fig. 3(b). As anticipated, the prediction error in the extrapolation region x0 > 0 is significantly large, and 
the model fails to provide accurate results. Furthermore, as shown in Fig. 3(e), even when using an NKN kernel, 
the single-fidelity GP prediction in the extrapolated region remains poor. These results again confirm the 
fundamental limitations of extrapolation using a single GP model, regardless of kernel expressiveness. 

In contrast, we applied NARGP by utilizing not only high-fidelity but also low-fidelity data. Figure 3(c) shows 
that the result using NARGP with an RBF kernel does not improve the extrapolation performance. An analysis of 
the optimized hyperparameters of the RBF kernel revealed that the model had not sufficiently captured the 
dependence on the low-fidelity data fl, and the prediction effectively reproduced a single-fidelity GP regression 
based solely on x0 and x1. On the other hand, Fig. 3(f) shows the result of NARGP using an NKN kernel, where 
the prediction accuracy in the extrapolated region was significantly improved. Taken together with the results of 
the previous sections, we conclude that combining a multi-fidelity data integration algorithm with complex and 
flexible kernels that handle multiple length scales is indispensable for improving extrapolative predictions. 

This improvement in extrapolation performance by NARGP is due to the replacement of the extrapolative 
dependence of the high-fidelity function by a simplified expression. NARGP expresses the high-fidelity function 
fh(x0, x1) in the extended parameter spaces gh(x0, x1, fl(x0, x1)). In the current problem setup, this function can be 
expressed simply as a function of the low-fidelity function fl alone, that is, fh(x0, x1) = gh(x0, x1, fl(x0, x1)) = gh(fl). 
By modeling the high-fidelity function in this form, the model can exclude the direct dependence on the 
extrapolating parameter x0, and therefore, convert the original extrapolation problem into an interpolation problem, 
specifically, learning the relationship between fl and fh. In this study, we refer to this effect as "Interpolation 
Recasting." That is, NARGP achieves high predictive performance in extrapolated regions by transforming a 
difficult extrapolation problem (with respect to x0) into a tractable interpolation problem based on the correlation 
between low- and high-fidelity functions. 

 

FIG. 3. Extrapolative prediction for a 2D test function. (a) Sampling points of training data: blue crosses show 512 sampling 
points for low-fidelity functions, while orange dots show 196 sampling points for high-fidelity functions. (b) Single GP 
prediction with an RBF kernel using only the high-fidelity data. (c) NARGP prediction with an RBF kernel using the low- and 
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high-fidelity data. (d) Exact profile of the high-fidelity function. (e) Single GP prediction with NKN kernel. (f) NARGP 
prediction with NKN kernel. 

3.4. Multi-fidelity extrapolative prediction of plasma turbulence transport dataset 

3.4.1. Problem setup 

Finally, we apply the proposed multi-fidelity regression approach to a real experimental dataset on plasma 
turbulent transport in magnetic confinement fusion devices, JET. In this dataset, 12 local plasma parameters are 
used as input features, x = (R/Ln, R/LTe, R/LTi, ni/ne, Te/Ti, β, νee, q, ŝ, ε, κ, δ), where the normalized inverse density 
and electron/ion temperature gradient scale lengths, R/Ln, R/LTe, R/LTi, the ion-to-electron density ratio ni/ne, the 
electron-to-ion temperature ratio Te/Ti, the plasma beta value β, the electron-electron collision frequency νee, the 
magnetic geometrical factors such as the safety factor q, the magnetic shear ŝ, the inverse aspect ratio ε, the 
elongation κ, and the triangularity δ. The experimentally measured turbulent diffusion coefficient is used as the 
high-fidelity data, denoted as y = Dexp, which we aim to predict. To formulate the multi-fidelity framework, we 
use the linearly most unstable wavenumber k and its growth rate γ in local gyrokinetic microinstability analysis 
as low-fidelity data. For detailed information on the dataset, refer to our previous publications [2, 11]. 

In this study, we intentionally restrict the training high-fidelity dataset to regions with relatively high diffusion 
coefficients (67 points having the Dexp value larger than its median of the total 135 data points), and use the model 
to extrapolate into unseen regions with lower diffusion levels. This setup mimics a realistic and practical scenario 
in fusion reactor design. The experimental data are always limited to the parameter range of existing devices. In 
contrast, it is necessary to estimate turbulent transport levels in untested regimes to predict the future performance 
of magnetic confinement fusion plasma. 

3.4.2. Results 

The regression results of the conventional GP regression with the RBF kernel are shown in Fig. 4(a). While the 
model achieves good agreement with the experimental data in the training region, the prediction accuracy drops 
significantly on the test data. Since the training data only has large values of Dexp, the GP model tends to 
overestimate the transport level on the test data. Next, we replaced the kernel with NKN and retrained the single-
fidelity GP model. As shown in Fig. 4(b), the improvement in extrapolation performance is insufficient. This 
result confirms that the conventional single-fidelity GP regression has general difficulty with extrapolation, even 
when using a more expressive kernel function. 

In contrast, Fig. 4(c) shows that a multi-fidelity regression using NARGP with an NKN kernel reduces the 
overestimation of transport levels in the test data. The prediction accuracy in the extrapolated region is clearly 
improved. Specifically, the consistency with experimental values is better in areas with small diffusion 
coefficients, even though such regions were not included in the training data. A key advantage of multi-fidelity 
modeling is that low-fidelity information (i.e., linear growth rates γ and its wavenumbers k in the present dataset) 
remains available even in the extrapolated regions of the high-fidelity data. By learning the nonlinear correlation 
between low- and high-fidelity data in the training region, the NARGP model can improve predictions in 
extrapolated areas by leveraging the values of the low-fidelity data and their relationships to high-fidelity outputs 
(e.g., small γ and large k tend to exhibit low turbulent transport Dexp). 

3.4.3. Analysis of the outlier and the limitations of extrapolation 

It should be noted that Fig. 4 (c) still contains a finite number of outliers with large prediction errors. To understand 
the limitations of our extrapolative prediction, we analyzed these outliers. Specifically, we evaluated how far each 
test point lies from the distribution of training data in the multidimensional input space using the Mahalanobis 
distance [12], 

𝑑𝑑𝑀𝑀(𝒛𝒛) = min
𝒕𝒕𝑖𝑖∈Ω

�(𝒛𝒛 − 𝒕𝒕𝑖𝑖) ⋅ Σ−1 ⋅ (𝒛𝒛 − 𝒕𝒕𝑖𝑖) (12) 
where z = (x, y) is the test data point, Ω = {ti} is the training dataset with i-th training data point ti = (xi, yi), and Σ 
is the covariance matrix computed using the training dataset. For each test point, we computed the Mahalanobis 
distance against every training point and used the smallest value as its representative distance against the training 
dataset. Test points with their representative distances greater than 3.0 were classified as “far” data, while the 
others were considered “near” data. This classification is visualized in the plots of Fig. 4 by using different 
symbols. The analysis reveals that all outlier points with large prediction errors tend to be far from the data, having 



MAEYAMA et al. 

 
7 

a large Mahalanobis distance from the dataset. In other words, outliers are points that lie outside the distribution 
of the training dataset. 

This result indicates that while NARGP is a powerful tool to improve the extrapolative predictability, its 
effectiveness is fundamentally limited to regions where the correlation between low- and high-fidelity data holds. 
In extreme parameter regimes far from the training distribution, the predictive performance of NARGP may 
degrade. Therefore, for practical applications, it is essential to establish quantitative methods for identifying 
“extrapolatable” versus “non-predictable” regions. In this study, we propose a useful framework for such 
identification, utilizing the Mahalanobis distance as a quantitative measure of distance from the training 
distribution. 

 

FIG. 4. Extrapolative prediction for turbulent diffusion coefficient from JET experimental dataset. Comparison of 
predicted and actual values for: (a) single GP prediction with an RBF kernel, (b) single GP prediction with NKN 
kernel, and (c) NARGP prediction with NKN kernel. Green daggers denote training data. Blue circles represent 
test data located near the training distribution (as measured by Mahalanobis distance), and red crosses denote test 
data situated far from the training data distribution. 

4. SUMMARY 

In this study, we have examined how the extrapolative prediction performance of turbulent transport models in 
plasma can be improved by introducing a multi-fidelity information fusion approach with a Gaussian process (GP) 
regression framework. First, we highlighted the critical importance of kernel design in the extrapolation problem. 
We demonstrated that capturing both short-term variations and long-term trends requires a flexible kernel structure 
that can represent multiple correlation scales. To this end, we implemented a neural kernel network (NKN) and 
demonstrated its effectiveness. Building upon this, we applied nonlinear auto-regressive Gaussian process 
(NARGP) regression as a multi-fidelity regression method, confirming that it further enhances the performance 
of extrapolation. We identified two underlying mechanisms that contribute to this improvement: (i) Dependence 
Simplification: Low-fidelity data absorb the complex parameter dependencies inherent in high-fidelity data. This 
enables the regression model to represent the high-fidelity target using a simpler functional form, thus facilitating 
extrapolation. (ii) Interpolation Recasting: By leveraging the correlation between low- and high-fidelity data, 
dependency on extrapolative input parameters can be effectively replaced with interpolation over the extended 
input space. In this way, extrapolation problems are reformulated into interpolation problems. Finally, we 
validated the proposed method using a real-world dataset of plasma turbulent transport. While the conventional 
single-fidelity GP regression suffered a severe drop in accuracy in extrapolated regions, the combination of NKN 
kernels and NARGP significantly improves the predictive accuracy in extrapolated regions. Furthermore, we 
demonstrated that the Mahalanobis distance provides a practical and quantitative means to identify feasible 
regions for extrapolative prediction.  

In summary, this study demonstrates that the multi-fidelity information fusion approach is a powerful strategy for 
tackling extrapolation challenges. By integrating data of various fidelity levels, including theoretical models, 
simulation results, and experimental measurements, this approach provides a robust foundation for enhancing the 
accuracy of transport models, ultimately benefiting the development of future high-performance magnetic 
confinement fusion devices. 
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