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Abstract

This work summarises activities to produce fast neural network (NN) surrogate models of the TGLF quasilinear model
of core turbulent transport in tokamaks. Two applications are presented. Firstly, TGLF surrogate models applicable to a host
of experimental devices with aspect ratio higher than 3 are devised. These complement existing surrogates for the QuaLiKiz
quasilinear model, while capturing additional poloidal shaping dependencies that are not included in QuaLiKiz, for a total of
13 dimensions spanned, and pushing towards full-radius applications in L-mode. NN surrogates for TGLF have also been
generated for the equilibrium space that will be spanned in the Ip ramp up of the STEP power plant. Surrogate-enabled
flux-driven integrated modelling runs are shown for an example Deuterium JET discharge and for a test STEP ramp up case,
demonstrating good agreement with the simulations using TGLF directly, and with a reduction in runtime of two orders of
magnitude. The achieved speed and accuracy of the surrogate models show promise towards large-scale validation of TGLF
on experimental devices and high-throughput accelerated optimisation of STEP via integrated modelling. The surrogate models
developed are open source and available at https://github.com/ukaea/tglfnn-ukaea/.

1. INTRODUCTION

Predictive modelling suitable for optimizing plasma scenarios remains impractical with first-principle based mod-
els, due to the need to evaluate turbulent transport models thousands of times within flux driven integrated mod-
elling (such as JINTRAC and ASTRA [2, 3]) when simulating dynamics over several confinement timescales.
While these limitations are already clear for current experimental machines, they are exacerbated for ITER and
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other power plant devices, given the longer transport timescales expected. For instance, a single transport sim-
ulation for the STEP ramp-up (≳ 2000s) [4] with an intermediate fidelity model such as the TGLF quasilinear
model [5, 6] can take several weeks. Therefore, present optimisation strategies in integrated models for both the
flat top [7] and ramp-up phases of STEP [8] are limited to low-fidelity transport models (e.g., Bohm/gyro-Bohm).
The ITER ramp up was modelled with a similar level of fidelity [9]. In general, there is a pressing need for
computationally feasible predict-first approaches that are necessary to design reactor-scale devices.

Surrogate models that provide a fast approximate solution to core transport given plasma states offer a solution
to this computational stalemate. Quasilinear transport models such as TGLF and QuaLiKiz [10, 11] are particu-
larly amenable for this purpose as they feature a good balance between speed and accuracy, and training sets on
the scale of millions of simulations can be obtained in a matter of days on a single compute node. For instance,
Neural Networks (NN) surrogate models of QuaLiKiz [12, 13] have demonstrated impressive speedups, reducing
integrated transport simulation runtimes from days to mere minutes, with applications ranging from modelling and
optimisation of ITER scenarios [14, 15] and flat-top predictions to challenging ramp-up modelling in JET [13].
Surrogate models of TGLF have been devised to model DIII-D discharges [16, 17].

At the same time, quasilinear models rest on an ad-hoc rule to describe turbulence saturation, and the full
extent to which these assumptions affect their capability to reproduce a wide range of experimental conditions in
flux-driven integrated simulations needs to be assessed to build confidence in their predictive power. Surrogate-
accelerated integrated models, managed with large-scale validation tools capable of running and monitoring many
thousands of simulations in parallel (such as DUQtools [18] and FUSE ??) enable an unprecedented modelling
validation across experiments and parameter spaces, allowing identification of the regions where model improve-
ment is required. Efforts towards a large-scale database validation performance on MAST-U, NSTX and DIII-D
are already under way using TGLF surrogate models [19, 20]. Validation in the parameter space of other devices
would complement current efforts to help determine the range of applicability of TGLF. In particular, there is an
interest to obtain predictions from flux-driven integrated transport simulations using TGLF up to the separatrix in
L-mode, e.g. [21]. In this paper, a surrogate model of TGLF, TGLFNN-UKAEA-MULTIMACHINEHYPER, is pro-
vided in a space that encompasses tokamaks with aspect ratio A≥3. The surrogate model is based on a hypercube
that largely mimics the work that [12] carried out for QuaLiKiz, with added shaping dimensions and extending up
to the separatrix. The surrogate model is demonstrated on an L-mode Deuterium JET discharge within JINTRAC.

TGLF is also the only fast quasilinear model available that includes electromagnetic and shaping effects, thus
making it suitable for modelling STEP. The compact design of STEP implies limited space for the central column,
which will therefore host only a small solenoid suitable for startup. A non-inductive current ramp-up will there-
fore be driven in a low-density regime where ECCD is most efficient, and plasma densification will be necessary
to transition to the burning plasma phase where bootstrap current dominates [22]. The required auxiliary power
to drive the current depends on confinement and therefore, from the modelling perspective, on transport assump-
tions. Current capability to model the Ip ramp-up in STEP is limited to a modified Bohm/gyro-Bohm scaling as
shown in [8]. Although [8] presented an efficient optimisation scheme, this low fidelity transport assumption is
considered insufficient to deploy in practice due to the very nonlinear relationship between confinement, ECCD
and auxiliary power. A higher fidelity model such as TGLF would provide a better physics basis. However, a
fully non-inductive ramp-up is particularly challenging to achieve, with many competing constraints and optimi-
sation objectives at play. The complexity of the optimisation landscape will likely require querying a very large
number of transport simulations to achieve the optimum. This issue is further exacerbated by the lack of data
for a reactor-scale spherical tokamak, which requires performing extensive uncertainty quantification, i.e. even
more simulation runs. A surrogate model of TGLF for the STEP ramp up would enable higher fidelity trajectory
optimisation compared to current capabilities. Two surrogate models based on training spaces obtained with dif-
ferent methodologies, TGLFNN-STEP-V2 and TGLFNN-STEP-V1, are presented and applied to a test ramp-up
trajectory, thus demonstrating the usefulness of surrogate models for reactor design.

This paper is structured as follows: section 2 details the strategy to build the input space for the surrogate
models, Section 3 shows the standalone performance of the surrogate models, and Section 4 shows the application
of the surrogate models in flux-driven transport simulations.

2. DATA

Surrogate models require a training data set of input–output pairs from which they can learn, and the scope of this
data set largely determines the model’s regime of applicability. Ideally, the training data would comprehensively
cover all relevant input dimensions of the underlying model to ensure completeness. In practice, however, this
is rarely feasible because of the ‘curse of dimensionality‘ [23]. As dimensionality increases, learning becomes
progressively more difficult: (i) sample points become increasingly sparse in high-dimensional spaces, and (ii)
extending the range of even a single input dimension leads to an exponential growth in the volume of parameter
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space, further compounding the sampling problem. Some data–efficient Active Learning approaches [24] to allevi-
ate this issue have been developed and demonstrated to build surrogate models of QuaLiKiz [25, 26] and GS2 [27,
28]. These strategies rely on iterative acquisition of data by running simulations only in regions of parameter space
deemed most informative, and require retraining at every acquisition. The value of such strategies lies mostly in
settings where medium-sized datasets need to be collected, and where simulations are very expensive. If very
large databases need to be collected, and if simulators are relatively fast, as is the case for quasilinear transport
models, the training time ends up dominating the computational cost, making Active Learning not worthwhile in
this specific scenario. The strategies for building the input spaces of the surrogate models introduced in this work
are detailed below.

2.1. 13D multimachine hypercube

A straightforward strategy to keep the number of simulation runs manageable is to simply reduce the number of
dimensions spanned and adopting space-filling methods such as Latin Hypercube Sampling (LHS). A subset of
important features for core transport surrogate models was identified in the work by [12] for obtaining surrogates
of QuaLiKiz. The same dimensions and ranges are spanned in this work with LHS. See Table 1 in [12] for more de-
tails. Shafranov shift (∆), triangularity (δ) and elongation (κ), which were not included in [12] due to QuaLiKiz’s
geometry assumptions, are also added as dimensions, with ∆ ∈ [−0.3, 0], δ ∈ [−0.2, 0.2] and κ ∈ [1.2, 1.5]. Fur-
thermore, the ExB shear is accounted for explicitly, with V EXB_SHEAR = −SIGN(Itor)

r
q

∂
∂r

(
VEXB

R

)
a
cs

∈
[−0.2, 0.2]. The pressure gradient is computed self-consistently from the quantities in the hypercube, thus avoid-
ing adding an extra dimension to the input space.

The structure of the TGLF input space separates major and minor radii as two independent inputs. In this
work, the flux surface centroid major radius of the separatrix RMAJ_LOC= Rmaj/a is set to 3. As the radial
coordinate RMIN_LOC= r/a ∈ [0, 1] and the gradients are normalised with respect to a, a range of aspect ratios
RMAJLOC/RMINLOC = Rmaj/r is covered, specifically all aspect ratios higher than 3. The saturation
rule SAT2 is chosen for this study as an example, but extension to the other saturation rules is planned. Figure
1 shows the resulting input and output space distributions. Although the original space is a Latin hypercube, the
distributions shown here depart from the uniformity typically expected of Latin Hypercube Sampling, as they
arise from restricting the output fluxes to values below 200 GB in absolute value — the range most likely to be
queried by downstream models. As expected, this cut mostly affects regions of the space with high gradients,
higher radial locations, high ion-to-electron temperature ratio, low collisionality and high safety factors. Regions
of low magnetic shear are discarded, while distributions in poloidal shaping and ExB shear are unaffected.

We denominate the surrogate model trained on this space TGLFNN-UKAEA-MULTIMACHINEHYPER. Its
main limitations are that it cannot handle impurity transport and electromagnetic effects, which have been shown
to be important in some scenarios [29, 30]. Momentum transport is also excluded.

2.2. STEP

Table 1 shows the input TGLF dimensions included for STEP. Compared to TGLFNN-UKAEA-MULTIMACHINEHYPER,
the derivatives of triangularity and elongation are also added to the parameter space. Electromagnetic effects in
STEP are also important and therefore β is also included. The EXB shear is not included in this iteration but it will
be in future work. The total number of dimensions for the input space considered for STEP is 15, which is higher
than for TGLFNN-UKAEA-MULTIMACHINEHYPER. A strategy that allows for a higher dimensionality while
keeping the number of required training data within reasonable limits consists in exploiting the full covariance
of the experimental space, as done in [16] and [13], which allows to discard regions of parameter space that are
unlikely to be queried in downstream applications. However, for STEP, an experimental space is not available and
therefore an adaptation of this strategy is required. Specifically, the input space correlations are harvested using
Pyrokinetics [31] from a suite of ramp-up transport simulations which were run with JETTO. However, running
transport simulations with TGLF is expensive in the first place, and therefore obtaining an extensive input space
can be costly. In this work, two different spaces are obtained from either simulations with Bohm/gyro-Bohm
transport [4], which run in about two days each, or with the TGLF transport model, which take around 2 weeks
each on 60 cores. From these spaces, distinct TGLF surrogate models are obtained to assess the performance
in production of a cheaply produced input space (i.e. with Bohm/gyro-Bohm transport) versus an expensive to
obtain input space (i.e. with TGLF transport). The surrogate models obtained from these spaces are denomi-
nated TGLFNN-STEP-V1 and TGLFNN-STEP-V2 respectively. The input dimensions considered in both cases
are summarised in Table 1. As in TGLFNN-UKAEA-MULTIMACHINEHYPER, the pressure gradient is computed
self-consistently from the quantities available in the input space.

For each space, a Kernel Density Estimate (KDE) was produced to obtain a smooth distribution that preserves
the data covariance. The correlations were broadened artificially by 10%, partially removing the correlations and
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FIG. 1. The distribution of parameters in the training space of TGLFNN-UKAEA-MULTIMACHINEHYPER. Al-
though the original space is a Latin Hypercube, the distributions shown here are not uniform as it would be
expected from Latin Hypercube Sampling, and are a result of limiting the output fluxes to less than an absolute
value of 200 GB.

Symbol Parameter STEP-V1/2 MULTIMACHINEHYPER

R/Lne
Density gradient ✓ ✓

R/LTe
Electron temperature gradient ✓ ✓

R/LTi Ion temperature gradient ✓ ✓
q Safety factor ✓ ✓
ŝ Magnetic shear ✓ ✓
ν∗ Collisionality ✓ ✓
β Plasma to magnetic pressure ratio ✓ ×

Zeff Effective ion charge ✓ ✓
Te/Ti Electron to ion temperature ratio ✓ ✓
r/a Flux surface centroid minor radius ✓ ✓
∆ Shafranov shift ✓ ✓
δ Plasma triangularity ✓ ✓

rdδ/dr Shear in triangularity ✓ ×
κ Plasma elongation ✓ ✓

r/κdκ/dr Shear in elongation ✓ ×
V EXB_SHEAR ExB shear × ✓

TABLE 1. Dimensions spanned by TGLFNN-STEP-V1/2 and TGLFNN-UKAEA-MULTIMACHINEHYPER.
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Parameter STEP-V1 STEP-V2 MULTIMACHINEHYPER

Learning rate 1.e-4 1.e-4 2.e-4
Weight decay 1.e-4 1.e-4 1.e-4
Dropout rate 0.05 0.05 0.05
Hidden size 512 512 512

Number of layers 6 6 6

TABLE 2. The NN settings from the coarse grid search that minimised the Guassian Negative Log Likelihood
loss.

for the purpose of generalisation to unseen simulation trajectories. As flexibility in safety factor and shear were
deemed necessary to allow for MHD stability optimisation in downstream applications, correlation between these
dimensions and the remainder of the space were completely removed. 1M inputs per distribution were sampled
and the respective TGLF outputs were generated. The saturation rule SAT1 was chosen as it provides a good
match to MAST-U [19]; more saturation rules will be available in future work to allow capturing our epistemic
uncertainty on transport in STEP. The linear solver settings of TGLF were calibrated against gradient-driven linear
CGYRO [32] simulations at several times in an example ramp up case.

3. SURROGATE MODELS

3.1. Neural Network architecture and JINTRAC integration

The NN architecture adopted in this work is the same as in [25]. Briefly, the surrogates are Deep Ensembles
[33] which offer a simple and scalable way of performing uncertainty quantification, a necessary feature of any
surrogate model used in production. Deep Ensembles model an equaly weighted Gaussian Mixture where each
ensemble member is a NN the outputs of which are the mean and standard deviation of a Gaussian distribution.
The NNs are trained by minimising the gaussian negative log-likelihood as the loss function. In this work, 5 NNs
per ensemble are chosen. A grid search is performed to optimise the network depth, hidden layer size, learning
rate and L2 regularization for each member of the ensemble.

The TGLF fluxes considered are the ion heat flux, qi, the electron heat flux, qe and the ion particle flux, Γi

which, due to ambipolarity is equal to the electron particle flux Γe and opposite in sign. Each TGLF flux is fitted
independently by each NN. The fluxes are capped at 200 GB.

The neural networks were incorporated into the JINTRAC integrated modelling suite. Manual coding of
individual networks and dependence on a specific architecture were avoided. Instead, the models were traced
using TorchScript, which allows their execution as lightweight, self-contained modules independent of Python and
architecture-specific definitions, thereby enabling faster, plug-and-play deployment in the integrated environment.
The traced TorchScript models are called in Fortran via FTorch [34], and are accessible with a simple drop-in
replacement for TGLF.

3.2. Surrogate model validation

Figure 2a shows the performance of the TGLFNN-UKAEA-MULTIMACHINEHYPER on an independent test set
not observed during training, demonstrating production-ready performance.

Figures 2b and 2c shows the performance of the surrogate models for the spaces obtained from the JETTO
simulations with Bohm/gyro-Bohm and TGLF transport respectively on independent test sets not observed during
training. Of particular note is that the space obtained from the Bohm/gyro-Bohm transport modelling assumption
produces higher fluxes than from the space obtained from using TGLF within JETTO (i.e. via more costly simula-
tions). This is likely due to underprediction of transport in the Bohm/gyro-Bohm -based JETTO runs, and therefore
higher gradients. Both the TGLFNN-STEP-V1 and TGLFNN-STEP-V2 surrogate models reproduce TGLF fluxes
from a test set unseen during training, but it is expected that they will perform differently in flux-driven simula-
tions due to the different training space spanned. Although the general trend is very good, the predictions in the
low flux region tend to be more noisy. Investigation in this issue is ongoing.
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FIG. 2. (a): Comparison between the true TGLF predictions in the hypercube space applicable to several Eu-
roFusion machines. (b): Comparison between the true TGLF predictions in the space defined by the JETTO
simulations equipped with Bohm/gyro-Bohm transport and TGLFNN-STEP-V1. (c):Comparison between the true
TGLF predictions in the space defined by the JETTO simulations where TGLF was used and TGLFNN-STEP-V2

Quantity RRMS
Te 1.8 %
Ti 3.5%
ne 3.7%

TABLE 3. Relative Root Mean Squared Error for the profiles predicted by surrogate-enabled JINTRAC modelling
of the JET discharge #89723 compared to JINTRAC with TGLF.
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FIG. 3. Performance of the TGLFNN-UKAEA-MULTIMACHINEHYPER surrogate models in a flux-driven inte-
grated JINTRAC run for the JET discharge #89723. Experimental data is not shown, as the main objective is to
assess the quality of the surrogate model compared to runs adopting TGLF.

4. DEMONSTRATION IN INTEGRATED RUNS

4.1. Multimachine hypercube applied to JET

The TGLFNN-UKAEA-MULTIMACHINEHYPER surrogate models have been demonstrated on the JET #89723
D L-mode discharge.

Figure 3 shows the results of this exercise, and Table 3 report the RRMS error for these plots, computed as

RRMS =

√√√√ 1

N

∑
i

(
YNN,i − YQLK,i

)2
Y 2
QLK,i

(1)

where the sum is over the number of radial points, and YNN,i and YQLK,i indicate the profiles computed using the
NN prediction and TGLF respectively.

On the selected discharge, the surrogate-enabled JINTRAC runs achieve a sub 5% accuracy, with a runtime
reduced from ∼4.5 hours to a mere ∼2 minutes. It is observed that most of the error comes from the region near
the magnetic axis, likely due to the exclusion of that region in the training data. This will be addressed in a future
version of the surrogate models. Nevertheless, the overall achieved accuracy indicates strong potential for success
in a large validation exercise.

4.2. STEP

The TGLFNN-STEP-V1 and TGLFNN-STEP-V2 have been applied to a test STEP ramp up case [4] where TGLF
was used. A comparison between TGLF and both the surrogate models is provided in Figure 4.

The runs using the TGLFNN-STEP-V2 surrogate models are generally well-behaved, although there is a loss
of accuracy towards the end of the simulation, likely due to this simulation extending beyond the time provided in
the training data. As expected, the TGLFNN-STEP-V1 surrogates agree less well with the ground truth compared
to TGLFNN-STEP-V2, with errors compounding and driving the simulation towards a very different solution after
∼1500 seconds. In particular, a poorer confinement and lower temperatures are predicted, as well as a smaller
bootstrap current and density. These results highlight the challenges of using a low-fidelity physics model to define
the training space of a higher fidelity model.

The adoption of the surrogate models within the transport simulation reduce the runtime from 2 weeks on 60
cores to only 4 hours on 5 cores. The achieved accuracy and speed of TGLFNN-STEP-V2 are promising in view
of the need for high-throughput ramp up optimisation studies in STEP.

5. CONCLUSIONS

This work presented NN surrogate models in the Ip ramp up for STEP (TGLFNN-STEP-V1 and TGLFNN-STEP-
V2) as well as in a space applicable to several devices with aspect ratio greater than 3 (TGLFNN-UKAEA-
MULTIMACHINEHYPER). The performance and speed achieved will allow to perform large scale validation
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FIG. 4. STEP ramp up case obtained using TGLF (in red), TGLFNN-STEP-V1 (in purple) and TGLFNN-STEP-V2
(in blue).

of TGLF in a broad parameter space, particularly in L-mode, full-radius applications, and it will enable high-
throughput optimisation for the STEP ramp up. Future work includes (i) expanding the scope of TGLFNN-
UKAEA-MULTIMACHINEHYPER to increase the dimensionality of the input space which will allow multi-ion
transport and momentum transport predictions; (ii) to extend the STEP TGLFNN-STEP-V2 space to higher β.
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