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Abstract 

The dynamics of edge-core coupling is critically important to the optimal performance of magnetically confined fusion 

plasmas. Since early proposals, there has been persistent speculation that inward propagation of turbulence from the boundary 

is a possible means to energize the edge-core coupling region. However, the detailed mechanism of this process has remained 

a mystery until recent experiments observed that regular, intense gradient relaxation events generated blob-void pairs very 

close to the last closed flux surface. Blobs (𝑛̃ > 0) propagate outward into the scrape-off layer (SOL), while voids (𝑛̃ < 0) 

propagate inward, and so stir the core plasma. Here, we demonstrate that this heretofore ignored process of void emission can 

drive a broad turbulent layer of width ∼ 100 𝜌𝑠, for typical parameters. The mechanism is the Cherenkov emission of drift 

waves from inward-propagating voids. The model shows promise to resolve several questions surrounding the shortfall 

problem and the strong turbulence in the edge-core coupling region. 

1. INTRODUCTION 

Turbulence is often thought of as a multi-ingredient concoction—a “soup” containing eddys, waves, structures, 

etc. Here, “structures” may refer to vortices, density blobs, phase space holes, etc. [1–5]. Structures are 

distinguished from ordinary eddys by extended lifetimes and a self-binding character that maintains them against 

stochastic shear stresses. The well-known and physically appealing Okubo-Weiss criterion gives one measure of 

the resilience of a vortex structure [6,7]. In magnetically confined fusion plasmas, structures are present in the 

form of blobs and voids that are plasma filaments with large-amplitude positive or negative density fluctuations. 

Blobs and voids propagate in opposite directions, down and up the mean gradient, respectively [8,9]. As voids 

move inward and thus stay in the bulk plasma, they can be viewed as messengers sent from the edge to the core.  

This inward motion of voids brings us to the dynamics of edge-core coupling, which is critical to the optimization 

of magnetically confined fusion plasmas [10]. To this end, the physics of what sets the width of the edge-core 

coupling region, where the turbulence level sometimes exceeds the prediction of standard Fickian gyrokinetic 

models, has long been a “known unknown”. This is referred to as the “shortfall problem” [11,12]. The edge-core 

coupling region is also named as “no man’s land” (NML) because it falls between the domains of the conventional 

core and edge models and codes [5]. Since early proposals by B.B. Kadomtsev [13], there has been persistent 

speculation that inward propagation of turbulence from the boundary is a means to energize the NML [14]. 

However, no work has set forth a detailed physical picture that explains how “the tail (edge) wags the dog (core)”. 

No reasonable estimates of the inward turbulence intensity flux and the width of the NML have been proposed, 

either.  

Recent beam emission spectroscopy (BES) studies confirmed that, in L-mode, regular, intense gradient relaxation 

events (GREs) generated blob-void pairs very close to the last closed flux surface (LCFS) in tokamaks [15]. Thus, 

GREs pervade plasma boundary turbulence with coherent structures. In particular, blobs propagate outward into 

the scrape-off layer (SOL), while voids propagate inward and so stir the NML. Recently, it has been found that 

the shortfall is resolved in flux-driven gyrokinetic simulations, where relaxation of mean gradients is allowed [16]. 

This suggests a correlation between GREs and the formation of NML. As a concrete entity produced from GREs 

and delivered from edge to core, a void is a promising mediator of the inward turbulence spreading. On MAST, 

experiments show that the detection of a void is usually followed by a burst in zonal flow power [17]. A similar 

phenomenon is also observed in the latest experimental results from the stellarator TJ-K. This is direct evidence 

that coherent structures can drive zonal flow and play an important role in plasma turbulence dynamics. 
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Existing studies on coherent structures primarily focus on the scaling of their convection velocity in different 

plasma regimes. Although the interaction between drift waves and zonal flows has been well established, the 

interaction of coherent structures, another important component of plasma turbulence, with the former two has 

rarely been discussed. Therefore, current research on coherent structures is insufficient to account for the above 

results. Another regrettable fact is that far more attention has been given to blobs than to voids. In other words, 

there are millions of papers on blobs, while the scale of papers on voids is far less in comparison. This is likely 

attributed to the challenges in diagnosing voids—since they move inward, it is not feasible to insert probes too 

deeply into the plasma. To resolve the shortfall problem and figure out the role that voids play in inward turbulence 

spreading, we need a model that treats voids on an equal footing with drift waves and zonal flows.  

Here, by developing a first-principles model incorporating 

density voids into turbulence dynamics, we demonstrate that 

the Cherenkov emission of drift waves from inward-moving 

voids generated at the edge drives substantial inward 

turbulence spreading. The physical picture of our model can 

be illustrated by the cartoon in Fig. 1. After being generated 

from GREs at 𝜓0, inward-moving voids (deep blue circles) 

will excite a “radiation field,” which can be divided into a 

near field and a far field. In the near field, the void drives an 

interchange response, which converts to a drift wave 

turbulence (light blue shades) in the far field. While voids 

“evaporate” at 𝜓1 , void-induced turbulence can propagate 

deeper and energize the NML in the range from 𝜓2 to 𝜓1. 

This turbulence is regulated by self-generated zonal flow, 

originating due to radiation-driven Reynolds stress. 

Concomitantly, the (ambient) turbulence and zonal flow can 

smear or shear the void, thereby constraining its lifetime, and 

so regulating turbulence production. For typical parameters, 

our theory predicts the following:  

(a) The width of the NML, which is determined by ratio of 

the void-induced turbulence spreading and the local production, and thus depends on the void parameters, is 

of order 100 𝜌𝑠.  

(b) The shearing rate of the void-driven zonal flow is comparable to or even exceeds the ambient shear.  

(c) The void lifetime ranges from a few to 100 𝜇s , which encompasses the observed experimental values 

reasonably well. 

2. MODEL DEVELOPMENT 

When developing a new model from scratch, it is always valuable to draw inspiration from “golden oldies.” Recall 

that an accelerating charged particle radiates electromagnetic waves [18]. In the context of plasma physics, another 

example is that a moving screened plasma test particle (macro particle) radiates plasma waves [19]. Similarly, if 

we think of a void as a macro particle, it is natural to consider that it would also emit waves while moving through 

the background plasma. The next question relates to what kind of waves the moving void emits. One way to 

address this is to identify which dynamical processes are relevant at the spatiotemporal scales of the voids. 

Experimental results indicate that the radial propagation speed of voids is comparable to the electron diamagnetic 

drift velocity 𝑣∗ [20,21]. This suggests that a moving void can excite drift waves, which motivates us to start 

from Hasegawa-Wakatani equation, the simplest model for drift waves [22].  

2.1. Formulation of model based on Hasegawa-Wakatani model 

Equation (1) is the Hasegawa-Wakatani equation with the curvature drive, 

𝑑

𝑑𝑡
∇⊥

2 𝜑 + 2𝜅
1

𝑛0

𝜕𝑛

𝜕𝑦
= 𝐷‖∇‖

2 (𝜑 −
𝑛

𝑛0

)

1

𝑛0

𝑑

𝑑𝑡
𝑛 = 𝐷‖∇‖

2 (𝜑 −
𝑛

𝑛0

)

(1) 

FIG. 1 Illustration of the energization of the no man's 

land by inward-moving voids. The confined plasma 

core is to the left of the magnetic surface 𝜓2. The wall 

of the device is to the right of the LCFS. 
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where  

𝑑

𝑑𝑡
=

𝜕

𝜕𝑡
+ 𝒗𝐸×𝑩 ⋅ ∇, 𝐷‖ =

𝑣the 
2

𝜈𝑒𝑒

1

𝜌𝑠
2𝜔𝑐𝑖

, 𝑛 = 𝑛0 + 𝑛̃. (2) 

For simplicity, electrostatic potential 𝜑, spatial and temporal coordinates, and velocities are nondimensionalized 

by 𝑇𝑒/𝑒, ion sound speed gyroradius 𝜌𝑠, ion gyrofrequency 𝜔𝑐𝑖 , and sound speed 𝑐𝑠, respectively. Here 𝑛 is 

the plasma density, 𝑛0 is the mean plasma density, 𝜅 = 𝜌𝑠/𝑅𝑐 is the dimensionless magnetic curvature (𝑅𝑐 is 

the curvature radius of the magnetic field), 𝑣𝑡ℎ𝑒 is the electron thermal velocity, and 𝜈𝑒𝑒 is the electron-electron 

collision rate. To be compatible with the presence of drift waves, the adiabatic limit (𝛼 = 𝐷∥𝑘∥
2/𝜔 > 1) should 

hold in regions away from the void. Here 𝑘∥ and 𝜔 are the wave vector in the direction parallel to the magnetic 

field and the frequency of the drift wave. In the region near the void, however, adiabatic electrons are 

unfavourable, as they prohibit density mixing, which is indispensable to coherent structure formation. This implies 

that the hydrodynamic limit (α <  1) is relevant in the vicinity of the void, instead. Therefore, as illustrated in Fig. 

2, the space of concern should be partitioned into two regimes: the near field regime where α <  1 and the far 

field regime where α >  1. By taking the corresponding limits, Eq. (1) reduces to 

𝑑

𝑑𝑡
∇⊥

2 𝜑 + 2𝜅
1

𝑛0

𝜕𝑛

𝜕𝑦
= 0,

1

𝑛0

𝑑

𝑑𝑡
𝑛 = 0

(3) 

in the near field regime and 

𝑑

𝑑𝑡
(∇⊥

2 𝜑 − 𝜑) − 𝑣∗

𝜕𝜑

𝜕𝑦
=

1

𝑛0

𝑑𝑛𝑣

𝑑𝑡
(4) 

in the far field regime, respectively. Note that Eq. (3) is identical to the classical two-field model (without 

dissipation) used to study self-propelled convection of coherent structures [23–25]. At the same time, the lhs of 

Eq. (4) is exactly the Hasegawa-Mima (HM) equation [26]. Voids enter the model via profile modulation, i.e., 

𝑛 = 𝑛0 + 𝑛𝑣 +  𝑛̃, where 𝑛𝑣 is the void density. Akin to test particle model [27], for tractability, we employ the 

delta-function-shaped expression for the void, 

𝑛𝑣

𝑛0

= 2𝜋ℎΔ𝑥Δ𝑦𝛿(𝑥 + 𝑢𝑥𝑡)𝛿(𝑦 − 𝑢𝑦𝑡)𝐻(𝑡)𝐻(𝜏𝑣 − 𝑡), (5) 

where ℎ = |𝑛𝑣|/𝑛0 ∈  (0.1,1)  is the void magnitude, 𝑢𝑥 

and 𝑢𝑦 are its radial and poloidal propagation speed. The 

spatial extent of the void Δ𝑥 and Δ𝑦 appear as the weight 

of the delta function. In addition, a product of two Heaviside 

step functions is introduced to account for the finite void 

lifetime 𝜏𝑣 . Throughout the rest of the letter, we focus 

primarily on the far field region, where turbulence excited 

by voids ultimately resides. 

Treating the rhs of Eq. (4) as the source, we can solve the 

potential 𝜑 of the far field using the Green’s function of the 

(linearized) HM equation. This approach follows that used 

in the dressed test particle model. See Appendix A for a 

detailed discussion on the linearization of Eq. (4). From this 

solution, we can further calculate the velocity field ( 𝒗̃ =
𝒛̂ × ∇𝜑 ) and the inward turbulence intensity flux Γ𝐼 , 

yielding an evaluation of void-induced spreading and the 

extent of the NML. The Reynolds stress (⟨𝑣̃𝑥𝑣̃𝑦⟩) and the 

shearing rate of void-driven zonal flow ( 𝜔𝑠
𝑣 =

− ∫ 𝜕𝑥
2 ⟨𝑣̃𝑥𝑣̃𝑦⟩ 𝑑𝑡 ) can also be calculated. These allow for a 

direct comparison between 𝜔𝑠
𝑣 and the ambient shear ω𝑠

𝑎. 

FIG. 2 The space of concern in our model can be 

divided into two regimes: the near field regime near the 

void (𝛼 <  1) and the far field regime away from the 

void (𝛼 >  1). 
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2.2. Green’s function of the linearized Hasegawa-Wakatani model 

Given the significance of the HM equation in plasma theory, surprisingly little literature exists on its Green’s 

function. Fortunately, the Green’s function of the linearized Rossby waves equation with a finite Rossby 

deformation radius, which is homotopic to the linearized HM equation, has been calculated in geophysics [28,29]. 

Thus the Green’s function of the linearized HM equation is 

𝐺(𝒓, 𝑡; 𝒓′, 𝑡′) = − ∫  
𝑐+𝑖∞

𝑐−𝑖∞

𝑑𝑠

2𝜋𝑖
ex p (𝑠𝜏 +

𝑣∗𝜒

2𝑠
)

×
1

2𝜋𝑠
K0 [(1 + (

𝑣∗

2𝑠
)

2

)

1
2

𝜌] ,

(6) 

where 

𝜉 = 𝑥 − 𝑥′, 𝜒 = 𝑦 − 𝑦′, 𝜏 = 𝑡 − 𝑡′, 𝜌 = |𝑟 − 𝑟′|, (7) 

and K0 is the modified Bessel function of the second kind. As Eq. (6) is in integral form, a direct implementation 

of it is impractical. If we focus on the dynamics after the destruction of the void, we can utilize the asymptotic 

form of the Green’s function in the limit of 𝜏 → ∞, 

𝐺 → −
1

2𝜋

1

√𝑣∗𝜌𝜏
cos [√2𝑣∗(𝜌 − 𝜒)𝜏]  as 𝜏 → ∞. (8) 

2.3. Local solutions of three limiting cases 

Even so, this expression is still too complex for 

analytical computation. And the fact that the 

motion of the void has both radial and poloidal 

components makes solving the far field equation 

even more challenging. To gain physical 

insight, we decide to seek only the local solution 

for cases where the void moves purely in the 

radial or the poloidal direction. As labelled in 

Fig. 3, the three specific cases we consider and 

their spatial orderings are, for (a), a void moving 

in the radial direction (𝑢𝑦 = 0): (1) the solution 

away from the 𝑥  axis but near the 𝑦  axis, 

(𝑥 ≲ 𝑥′ ∼ 𝑢𝑥τℎ ∼ Δ𝑥 ∼ Δ𝑦 ≪ 𝑦) and (2) the 

solution near the 𝑥 axis but away from the 𝑦 

axis, (𝑦 ≲ 𝑥′ ∼ 𝑢𝑥τℎ ∼ Δ𝑥 ∼ Δ𝑦 ≪ 𝑥); and for (b), a void moving in the poloidal direction (𝑢𝑥 = 0): (3) the 

solution away from the 𝑥 axis but near the 𝑦 axis, (𝑥 ≲ 𝑦′ ∼ 𝑢𝑦τ𝑣 ∼ Δ𝑥 ∼ Δ𝑦 ≪ 𝑦). 

Here, 𝑥 = 0 refers to the birth zone of the void, and 𝑦 = 0 can be thought of as the midplane. All three cases 

share the same temporal ordering, 

1/𝜔∗ ≪ 𝑡′ ∼ 𝜏𝑣 ≪ 𝑡. (9) 

Note that in each case, we have 𝜌 < 𝑣∗𝜏 to maintain causality. And as supported by experimental results [20], 

we also take 𝑢𝑥, 𝑢𝑦 ≲ 𝑣∗ so that the perturbation excited by voids could propagate ahead of the void. 

3. QUANTITATIVE RESULTS 

With the computed local solutions, we are now able to estimate the width of the no man’s land and the 

shearing rate of the zonal flow driven by the voids.  

FIG. 3 Schematic of the specific cases we examine in this work: (a) 

void moves purely in the radial direction; (b) void moves purely in 

the poloidal direction. 



Mingyun Cao and P.H. Diamond 

 

 
5 

3.1. Estimate of the no man’s land width 

The far field solution 𝜑 we calculate is effectively the turbulence field excited by voids and responsible for the 

void-induced inward spreading. As shown in Fig. 1, compared with the penetration depth of voids, the 

effects of the turbulence they excite could extend deeper into the main plasma (∼ 𝜓2 ), and enhance the 

turbulence level in the turbulence level in the NML. The balance equation for the turbulence intensity (without 

dissipation) is 
𝜕

𝜕𝑡
⟨𝑣̃2⟩ = −

𝜕

𝜕𝑥
⟨Γ̅𝐼⟩ + 𝜅⟨𝑣̃𝑛̃⟩. (10) 

On the rhs, ⟨ΓI⟩ is the turbulence intensity flux after poloidal and time averaging, and second term represents the 

local turbulence production rate. By integrating over the NML spanning from ψ2 to ψ1, we define the turbulence 

production ratio of turbulence spreading into the NML to overall local production in the NML as: 

𝑅𝑎 = ⟨Γ̅𝐼⟩|𝜓1
/𝜅 ∫  

𝜓1

𝜓2

⟨𝑣̃𝑛̃⟩𝑑𝑟. (11) 

Here, ⟨Γ̅𝐼⟩|𝜓2
 is neglected, as 𝑥 = 𝜓2 can be thought of as the cutoff line of voids’ influence. 

Our model provides us with an approximation of ΓI. As illustrated in Fig. 1, the gradient relaxation events, or, the 

edge instabilities, contain 𝑁 troughs in the poloidal direction, each of which can be considered as a void emitter. 

The spacing between individual emitters is denoted by 𝑙, and the width of the emitter is assumed to be of the 

order Δ𝑦, the characteristic size of voids. After each waiting time 𝜏𝑤, 𝑁 voids are emitted simultaneously. If 

each individual void contributes a pulse with a magnitude Δ𝐼, a duration of τ𝑣, and a poloidal extent of Δ𝑦, then 

the total turbulence intensity flux can be estimated by the superposition of these pulses, i.e., 

Γ𝐼 ∼ ∑  

𝑖,𝑗

𝑢𝑥Δ𝐼2𝜋Δ𝑦𝜏𝑣𝛿(𝑦 − 𝑖𝑙)𝛿(𝑡 − 𝑗𝜏𝑤), (12) 

where the indices 𝑖 and 𝑗 represent voids generated at different locations and times, respectively. Here we adopt 

𝑢𝑥 as the propagating speed of these pulses. We can think of this process as bulldozers (voids) pushing soil 

(turbulence pulses) at a speed of 𝑢𝑥. The magnitude Δ𝐼 can be obtained from the local solution at 𝑥 → ψ1
− in 

region 2 of Fig. 3. Consequently, the ratio given in Eq. (11) can be rewritten into 

𝑅𝑎 = (
ℎΔ𝑥Δ𝑦

𝑢𝑥𝜏𝑣

)
2 2𝜋

𝑣∗𝜏𝑣
2

Δ𝑦

𝑎

𝜏𝑣

𝜏𝑤

/(𝜅⟨𝑣̃𝑛̃⟩𝑤𝑛𝑚𝑙) (13) 

where 𝑎 is the minor radius of a tokamak. Here we consider a strong ballooning scenario (𝑁 ∼ 𝒪(1)) and 

approximate the local turbulence production as 𝜅⟨𝑣̃𝑛̃⟩𝑤𝑛𝑚𝑙, where 𝑤𝑛𝑚𝑙 = 𝜓1 − 𝜓2 is the width of the NML. 

Since NML is a region where the effect of turbulence spreading is significant, requiring 𝑅𝑎 ∼ 1 defines 𝑤𝑛𝑚𝑙 

as 

𝑤𝑛𝑚𝑙 ∼
2𝜋

𝜅⟨𝑣̃𝑛̃⟩
(

ℎΔ𝑥Δ𝑦

𝑢𝑥𝜏𝑣

)
2 1

𝑣∗𝜏𝑣
2

Δ𝑦

𝑎

𝜏𝑣

𝜏𝑤

. (14) 

Obviously, 𝑤𝑛𝑚𝑙  depends on the void magnitude, void size, and waiting time (N.B., 𝑢𝑥  and τ𝑣  are also 

functions of ℎ and Δ𝑥 [9]). These parameters for voids can be further related to the amplitude, spatial scale, and 

frequency of GREs. The fact that 𝑤𝑛𝑚𝑙  is positively correlated with ℎ  and negatively correlated with 𝜏𝑤 

implies that the stronger and more frequent the GREs, the wider the NML. To get a better sense of how big 𝑤𝑛𝑚𝑙  

is, a specific set of parameters is adopted for an estimate. When 𝑎 ∼ 103, Δ𝑥 ∼ Δ𝑦 ∼ 10, 𝜏𝑤 ∼ 𝜏𝑣 ∼ 103, 𝑣∗ ∼
𝑢𝑥 ∼ 10−2, 𝑣̃ ∼ 𝑛̃ ∼ 10−2, 𝜅/2π ∼ 10−4, ℎ ∼ 0.1, we can see 𝑤𝑛𝑚𝑙/𝜌𝑠 ∼ 𝒪(102), which is quite sensible. 

3.2. Comparison of shearing rate of void-driven flow to ambient shear 

Following the aforementioned procedure, the ratios of the resulting shearing rate of void-driven flow ω𝑠
𝑣  to the 

ambient shear ω𝑠
𝑎 in these three cases are also calculated and summarized by Table 1. For ℎ ∈ (0.1,1), it can be 
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seen that ω𝑠
𝑣  could be comparable to ω𝑠

𝑎 in all three cases, and can exceed it in case (2). This result could 

(qualitatively) explain the correlation between zonal flow power bursts and the detection of voids in experiments 

[17]. We should emphasize that, although we choose a specific set of parameters for order-of-magnitude estimates 

of both 𝑤𝑛𝑚𝑙  and ω𝑠
𝑣/ω𝑠

𝑎, the conclusions do not lose generality. In practice, the values of these parameters, of 

course, vary across different experiments and devices. Nevertheless, the flexibility in our choice of parameters 

indicates that sufficiently large 𝑤𝑛𝑚𝑙 and ω𝑠
𝑣/ω𝑠

𝑎 should exist in a considerably large portion of the parameter 

space. See Appendix B for a brief sensitivity analysis of the quantitative results. 

TABLE 1. The ratio of the shearing rate of the void-driven zonal flow to the ambient shear in all three cases. Here 𝑣𝐹
𝑎 and 

Δ𝐹
𝑎  are the characteristic speed and width of the ambient shear, respectively. For evaluations of ω𝑠

𝑣/ω𝑠
𝑎, we assume 𝑣𝐹

𝑎 ∼
10−2 and Δ𝐹

𝑎 ∼ 10. See the evaluation of 𝑤𝑛𝑚𝑙  and column 3 of this table for the values of other parameters. 

Case 𝜔𝑠
𝑣/𝜔𝑠

𝑎 Parameters 

① (
ℎΔ𝑥Δ𝑦

𝑣∗𝑢𝑥𝜏𝑣𝑎
)

2 Δ𝐹
𝑎

𝑣𝐹
𝑎/𝑣∗

∼ 10ℎ2 
𝑣∗, 𝑢𝑥 ∼ 10−2,  𝑥 → 0, 

𝑦 ∼ 102, 𝑡 ∼ 𝑎/𝑣∗ ∼ 105 

② (
ℎΔ𝑥Δ𝑦

𝑣∗𝑢𝑥𝜏𝑣
)

2 2 ln(𝑎/𝑣∗) Δ𝐹
𝑎

𝑥3𝑣𝐹
𝑎/𝑣∗

∼ (10ℎ)2 
𝑣∗, 𝑢𝑥 ∼ 10−2,  𝑥 ∼ 102, 
𝑦 → 0, 𝑡 ∼ 𝑎/𝑣∗ ∼ 105 

③ 
𝜋

2
(

ℎΔ𝑥Δ𝑦

𝑣∗𝑢𝑦𝜏𝑣
)

2
𝑥

𝑎3

Δ𝐹
𝑎

𝑣𝐹
𝑎/𝑣∗

∼ ℎ2 
𝑣∗, 2𝑢𝑦 ∼ 10−2,  𝑥 ∼ 10, 

𝑦 ∼ 102, 𝑡 ∼ 𝑎/𝑣∗ ∼ 105 

3.3. Prediction of the void lifetime 

At this point, we already know that voids can drive drift wave turbulence and zonal flow, and thus account for the 

formation of a turbulent layer. But to close the feedback loop of the edge dynamics, we need to complete the other 

half of the story: the effects of turbulence and zonal flow on voids. One intuitive conjecture is that turbulence and 

flow can smear or shear the void, hence constraining the void lifetime. This process can be formulated by a 

diffusion equation 

𝜕

𝜕𝑡
𝑛𝑣 = 𝐷∇⊥

2 𝑛𝑣 , (15) 

where 𝐷 is the turbulence diffusivity. Due to the properties of the diffusion equation, the magnitude of a given 

void will gradually decay. A practical definition of the void lifetime is the time it takes for its magnitude to decay 

to half of its initial value, which yields 

𝜏𝑣 =
2Δ𝑥2

𝐷
. (16) 

If we consider a purely diffusive model, i.e., in the absence of shear, the turbulent diffusivity scales as 𝐷 ∼ 𝑣̃𝑙𝑚𝑖𝑥, 

where the mixing length 𝑙𝑚𝑖𝑥 = 𝐿𝑛𝜌∗
𝛿  (𝜌∗ = 𝜌𝑠/𝐿𝑛 , and 𝐿𝑛  is the characteristic length of the mean density 

gradient [30]. However, in the presence of ambient shear (with the same shearing rate 𝜔𝑠
𝑎 as above) and assuming 

𝜌∗ ∼ 10−2, a new form of the diffusivity emerges. The ratio of 𝐷 to Bohm diffusivity 𝐷𝐵 ∼ 𝑐𝑠ρ𝑠 in these two 

branches are (1) 

𝐷/𝐷𝐵 ≃ 𝜌∗
𝛿 , 𝜏𝑣 ∝ 𝜌∗

−𝛿 (17) 

in the purely diffusive regime (𝐷𝑘⊥
2 > 𝜔𝑠

𝑎 or 
1

2
< 𝛿 < 1) and (2) 

𝐷/𝐷𝐵 ≃ 𝜌∗
(1+2𝛿)/4

, 𝜏𝑣 ∝ 𝜌∗
−(1+2𝛿)/4 (18) 

in the shearing dominant regime (𝐷𝑘⊥
2 < 𝜔𝑠

𝑎 or 0 < 𝛿 <
1

2
). 

Figure 4 plots the predicted void lifetime as a function of δ. As can be seen, the comprehensive model (red line), 

which includes the ambient shear, raises the lower limit of our prediction compared with the purely diffusive 
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model (blue line). For 𝜔𝑐𝑖 ∼ 108 s-1, the calculated void lifetime ranges from a few to 100 𝜇s, which agrees 

well with experimental results on MAST (green shade) [17]. 

4. CONCLUSION AND FUTURE PLAN 

To summarize, by incorporating density voids into edge dynamics, we obtain quantitative estimates of the void- 

induced inward turbulence intensity flux, NML width, shearing rate of void-driven flow, and void lifetime. Once 

generated from GREs, voids can excite drift waves via Cherenkov emission, creating an edge-core coupling region 

of width ∼ 100 𝜌𝑠, as derived from Eq. (14) for typical parameters. This picture explains the emergence of the 

shortfall in profile-driven gyrokinetic simulations, i.e., these suffer from the absence of GREs, void generation, 

and void-induced turbulence spreading. The fact that voids can drive zonal flow suggests a new mechanism of 

edge transport regulation. Under the effects of turbulence and zonal flow, the void lifetime is predicted to be 

between a few to 100 𝜇s. Voids, drift waves, and zonal flow constitute a new feedback loop that goes well beyond 

the traditional drift wave–zonal flow paradigm [31,32]. We expect that our model applies not only to L-mode but 

also provides insights into H-mode, where GREs are present as edge-localized modes. For future research, we’d 

like to study the net effect of voids on edge transport. One key factor will be the ratio of the decorrelation time of 

the drift wave turbulence excited by voids to the shearing rate of void-driven zonal flow. In addition, we aim to 

consider the scattering of the void by the renormalized turbulent field to construct a fully self-consistent model. 

Since voids lose energy by emitting drift waves, this consideration may further restrain the upper limit of the 

predicted void lifetime. Furthermore, we also recommend looking for direct evidence of void–turbulence and/or 

void–zonal flow interactions in experiments by using wavelet bispectrum analysis. 
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