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Abstract

This paper presents an efficient method for numerically extracting the nearest canonical equilibrium distribution fng
from an arbitrary axisymmetric distribution function of tokamak plasmas by formulating the problem as an optimization task
for the discrete form of the gyrokinetic Vlasov equation. An iterative scheme utilizing natural gradient descent is employed to
obtain fxg with a specified numerical accuracy. This approach incorporates an enhancement algorithm in order to accelerate
the convergence process for the phase space points near the trapped-passing boundary. Possible applications of this algorithm
are also discussed.

1. INTRODUCTION

Gyrokinetic simulation is a crucial tool for studying micro-turbulence in magnetized plasma, which plays a dom-
inant role in anomalous particle and heat transport in tokamaks. It is known that the typical frequency spectrum
of drift wave turbulence in a tokamak is close to the diamagnetic drift frequency, which is much lower than the
ion cyclotron frequency [[1]. Based on this fact, the gyrokinetic theory decouples the high-frequency gyromotion
of particles from their low-frequency drift motion by averaging over the gyro-angle, enabling the study of low-
frequency phenomena in fusion plasma while retaining essential kinetic effects like wave-particle resonances and
finite Larmor radius (FLR) effects [2]. This also allows the 6D phase space of particle to be reduced to a 5D
gyrocenter phase space, greatly reducing computational costs in simulations. Over the years, many gyrokinetic
simulation codes have been developed [3} 4, |5, 6] and applied to investigate turbulence transport properties in
tokamaks, effectively providing a detailed understanding of turbulence behavior and transport in plasma.

Gyrokinetic simulations fundamentally require the specification of a initial gyrokinetic equilibrium f; —a
baseline plasma state perturbed by turbulence. In collisionless plasmas, this initial equilibrium must satisfy the
condition
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Here Z = (X , UH,M) is the gyro-center coordinate variables, with X' the gyro-center position, v|| the parallel

Zi e fo = 0. (1)

velocity along the equilibrium magnetic field and o the magnetic moment. Zg = {Z ‘ HO} is the unperturbed
particle motion determined by equilibrium electro-magnetic field with Hy the unperturbed gyrocenter Hamiltonian
and {-} the unperturbed Poisson bracket. In toroidal axisymmetric systems like tokamaks, the unperturbed motion
is prescribed by three constants of motions (CoMs), the toroidal canonical momentum P, the particle kinetic
energy E and the magnetic momentum p. Consequently, this equilibrium distribution is naturally an axisymmetric
function of constants of motion fo (P, E, 1), which is also referred as a ’canonical equilibrium distribution” [7].
A well defined canonical equilibrium distribution should be given both initially and dynamically in gyrokinetic
simulation and it is essential to develop a reliable method for extracting the canonical equilibrium distribution from
a given reference distribution. In principle, there are infinite functions satisfy |1} so that the extracted one should
be the nearest one to the given distribution function—a concept referred to as the Nearest Canonical Equilibrium
Distribution” (abbreviated as "NE” for convenience). In this paper, we aim to define NE clearly and propose an
algorithm to accurately extract it from any given distribution function. The proposed algorithm is shown to be



robust, accurate, and easy to implement. Besides, it is also found that such a definition of NE is consistent with
the one given by the orbit average. Therefore, the proposed algorithm can also be regarded as an effective method
to calculate orbit average quantities.

In addition, the NE extraction algorithm presented here also performs an effective dimension reduction from
4D function gyrokinetic coordinate down to the 3D CoM space (P¢, E, it), since the extracted NE is already a
function of CoM. A direct transformation from fyg to a function of CoM can be done by a simple interpolation
along a certain poloidal angle #. This transformation is highly relevant in EP diagnoses [8 [9] and PSZS related
models.

2. EXTRACTING NE VIA NATURAL GRADIENT DESCENT METHOD

As illustrated above, a canonical equilibrium distribution f g in tokamak configuration should be axisymmetric
and invariant along the unperturbed orbit. So it has to satisfy the governing equation:
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Here we have written equation in magnetic flux coordinates (1,6, (). 1 is the flux surface label, 6 and ¢
are the poloidal and toroidal angle, respectively. Since O; fcr = 0 and it = 0, the problem is essentially three
dimensional with 9, 6 and v in general gyrocenter coordinates. The phase space Jacobian J = m i‘b‘
does not change the solutions of the equation since it is nonzero. Here B = By + ~vbg - V x by is the Jacobi
of the gyrocenter velocity variables, which is assumed essentially unchanged.

It is obvious that the solution to Eq. is not unique. As a matter of fact, any function of the constants
of motion, f(P;, E, i), satisfies this equation. The challenge lies in extracting an appropriate part from a given
axisymmetric distribution f(¢, 6 $Y|s u)ina ]ustlﬁable manner. Here, we define the NE through basis functions
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It can be found that U is a skew-adjoint operator:

U*=-U 3)

According to spectral theorem [10], U possesses a complete basis (including generalized eigen-functions for the
continuous spectrum), and all its eigenvalues are either zero or come in pairs of purely imaginary numbers ¢A. So
fo can be decomposed into two parts based on whether the eigenvalues are zero,
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Here, ¢,, and ¢, are basis functions and expansion coefficients. The expansion is written in a general form. The
continuous spectrum may lead to singularity behavior of the system, but it is not the focus of this paper. We only
focus on the A = 0 part.

So the nearest canonical equilibrium distribution can be properly defined as

e = cndn, ®)

which indicates the nearest canonical equilibrium fyg of a given function fy is its projection onto the static
subspace VNE.

Directly solving fng based on Vg or ¢,, is computationally impractical due to the high dimensionality of the
eigenvalue problem. Fortunately, the specific eigen-functions and eigenvalues are not necessary for the compu-
tation of fyg . Instead, the projection process can be reformulated as an optimization task of Eq. with a loss

function defined by:
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The goal is to optimize S to zero so that ng)i f = 0Ois satisfied everywhere in phase space. The standard numerical
method of this optimization is the natural gradient descent method. The corresponded iterative updating rule for
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where 7 is the step size. This iteration starts from the given distribution, f(*=0) = f;. In each step, f(*) goes to a
direction that reduce S. S
The operator G = —1 -2 (Z}J JZ? 2 ) is a positive semi-definite self-adjoint operator, so that (according to
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the spectral theorem) G hasa complete basis (self-adjoint) with non-negative eigenvalues (semi-definite). Besides,

one can easily prove that: . R
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which indicates the operator G and U have the same static function subspace V. Expanding f in the eigen-basis,
we found that the natural gradient descent method effectively shrinks the coefficients associated with non-zero
eigenvalues while preserving those with zero eigenvalues:
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Provided that n < % the algorithm is guaranteed to converge to:
FU7r =3 " endhn = fae (10)
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Thus, this iterative algorithm performs an effective projection of fy onto Vg, eliminating all non-equilibrium
components.

2.1. Acceleration of the convergence near the T-P boundary

Although the convergence of Eq. is guaranteed, the iterative scheme may still converge slowly for particles
near the trapped-passing boundary, where the orbit period 7, — oco. To address this, a positive weighting function
W (Z) is introduced to accelerate convergence rate

1 8 .. ;!
pe = 0 2 (wawz L), an
The modified operator
N 1 0 - i 0

remains positive semi-definite and self-adjoint, preserving the static function subspace Vng. The iterative process
still converges to the same fxg, provided that W (Z) > 0 everywhere. This approach can also be interpreted
as redefining the weighted loss function by:
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which makes the loss function more sensitive to regions with slow convergence rate, thereby enhancing the overall
convergence rate.

3. NUMERICAL IMPLEMENTATION

The proposed algorithm for fyg extraction has been implemented in NLT, a § f semi-Lagrangian gyrokinetic code
based on the numerical Lie transform method [11]]. Although the algorithm proposed here can be applied to
arbitrary distribution functions and equilibrium fields, in this work a local Maxwellian
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is chosen as the test function and no equilibrium electric field is considered for simplicity. The profile parameters
employed here are the same with the well-known CBC parameters used in [[12]. For comparison, we also explored
a direct orbit-averaging method. In this approach, each orbit was discretized into 128 sampling points, determined
via Newton-Raphson iteration by inverting the constants of motion. Enhanced sampling density was employed
near bounce points to address numerical sensitivities.



3.1. Effectiveness of the optimization algorithm for extracting fng

As the criterion for the convergence of the iteration, a normalized loss S, can be defined as
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which corresponds to the analytical expression
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The loss function is normalized by f and has the dimension of the inverse of time t~1. In the NLT code, time is
normalized by the cyclotron period of ion 7; = 1/Q,;. Figure a) shows the fast decrease of the normalized loss
with iteration round, where one round corresponds to 1000 iterative steps. Different colored curves correspond
to various values of i, with lighter color indicating larger value of x. The normalized loss Syom can be reduced
below 5 x 1078 after 50 rounds. This convergence result indicates that Zé % globally approaches zero, validating
the effectiveness of the algorithm. Specifically, if the equation
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is evolved using the same discretization scheme, it takes approximately 7' = 4 x 10%7; to reach a global variation
of §f/fo ~ 104, since the numerical error accumulates with time approximately following the scaling o T=.
This time significantly exceeds the relevant transport time scale. Therefore, numerically, Zé %fZNE can be considered
as zero. Figure[I{b) shows the relative variation in the loss function compared with the initial local Maxwellian.
After 50 rounds iterations, all losses are reduced to below 1.1 x 10~ of their original values, effectively approach-
ing zero. This computation utilizes 16 MPI process (one for each i) and 128 CPU cores (8 OpenMP threads for
each MPI process), requiring only 373 seconds for 50,000 steps, a negligible duration compared to the typical time
scales for turbulence transport simulations. The computational efficiency can be further improved by exploiting
the equilibrium’s up-down symmetry; solving only the upper half-plane within [0, 7] reduces the computational
load by half, as the lower half is simply a mirror image. Additional speed-up could also be achieved with more
efficient parallelization methods for sparse matrix multiplication.
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FIG. 1. (a) Decreasing trend of the normalized loss S}, With iteration round, where one round corresponds
to 1000 iterative steps. Different colors represent different values of p (lighter color for larger 1) processed in
parallel using MPI. (b) Relative change in loss after iterations, showing convergence below 1.1 x 10~% of the
original value after 50 rounds (50000 steps).

3.2. Transformation to CoM Space

The constants of motion (CoMs) in tokamaks are defined by (P, E, 1t), where:
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is the canonical angular momentum, F is the kinetic energy, and p is the magnetic moment.

A coordinate transformation can be performed from non-canonical gyrocenter coordinates (1, 6, v||, i) to CoM
space (P, E, i, 0),. The three constants of motion (P, E, ;1) uniquely define a particle orbit, while 6 specify the
position along that orbit. Here, o distinguishes between different Riemann sheets, reflecting the non-uniqueness
of the inverse transformation. Specifically, each point in CoM space (P, E, ,8) corresponds to two distinct
points in phase space (¢, 0, v, ). If the transformed function is independent of (¢, o)—meaning it remains
constant along the orbit—it effectively depends solely on the CoMs. This transformation is particularly relevant
in energetic particle diagnostics [8} 9] and in models involving Phase Space Zonal Structures (PSZS) [13}114].

As the extracted neighboring equilibrium fyg is already a function of orbit-constant, it inherently depends
only on the CoMs. Consequently, converting fyg into CoM space is straightforward, resulting in a function
feom(P¢, E, pt). To evaluate fcom at any given set of CoMs (P, E, 1), one can choose an arbitrary 6, and then
solve for the corresponding (¢, 6, v|, 1) based on the energy relation:

i = 2B 1B 00) 9)

Substituting this relation into the equation for P, we have:
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This equation in ¢ is nonlinear and can be efficiently solved using Newton iteration methods. After solving
for 1, v is computed directly from the energy relation. Finally, the corresponding value fcom (P, B, p) =
INe(¥, 00, v, 1) can be obtained by interpolation. The process, illustrated in Figure 2} efficiently transforms
/g into a CoM-based representation, enabling analysis in EP problems where dependencies on the constants of
motions are essential.
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FIG. 2. 2D contour plot of fcom in (P¢, E) with three specified p. fcom is obtained from fyg by interpolation.

4. CONCLUSION AND DISCUSSION

In this work, we have developed a method to rigorously define and extract the nearest canonical equilibrium distri-
bution from an arbitrary distribution function and equilibrium fields for gyrokinetic simulation by formulating this
task as an optimization problem. This definition aligns consistently with the concept of the orbit average method.
An iterative algorithm based on natural gradient descent was proposed, enhanced with a weighted approach to
improve convergence rate, especially in numerically challenging regions. Numerical results demonstrate that the
equilibrium distribution generated by this algorithm achieves significantly higher accuracy than that attainable
through the direct orbit-averaging method. This robust framework effectively isolates macroscopic processes of
interest in long-time plasma evolution studies. Furthermore, the computational overhead of this method is negli-
gible compared to typical gyrokinetic simulation times. Besides, the method provides a computationally efficient
framework for evaluating orbit-averaged quantities, such as (dP/dt)o 4, which are essential inputs for reduced
transport models [[13].
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