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Abstract

Notable progress has been recently achieved in understanding and predicting resonant layer response under non-
axisymmetric magnetic perturbations in tokamaks, by incorporating high order physics into the two-fluid drift-MHD layer
model. First, electron viscosity is shown to play an important role in low torque plasmas even despite its smallness, since the
generalized Ohm’s law requires a delicate balance with electron dynamics. This leads to a stronger density scaling of field
penetration threshold than earlier work, consistent with locked mode experiments. Secondly, the perturbation in ion flow is
shown to be critical in high-β conditions by maintaining screening effects, shifting the natural rotating frequency. As a result,
electromagnetic torque remains finite even when electron flow becomes stationary without field penetration – a surprising
prediction for reactor-relevant regimes. The incorporation of these two elements concludes the two-fluid drift MHD physics
implication for the narrow resonant layer response in linear regimes, as will be reviewed in this paper. The aforementioned
results have been verified by outstanding agreements between the extended asymptotic matching theory and computations
based on Riccati transformation. These new elements for layer model are being integrated to the general perturbed equilibrium
framework to develop a reliable predictive model for field penetration thresholds – a central subject of error field correction
against locked modes and resonant magnetic perturbation (RMP) ELM suppression.

1. INTRODUCTION

Field penetration is a bifurcation process in which magnetic islands form and grow near the resonant surfaces in response to
non-axisymmetric magnetic perturbations [1]. This involves a major alteration of magnetic topologies of nested flux surfaces
in a tokamak and thus significantly affect pressure or current profiles and thereby various instabilities. The field penetration
is believed to be the key to understanding the effects of an intrinsic error field (EF) or a controllable resonant magnetic
perturbation (RMP) [2]. When the field penetration happens in low (m,n) rational surfaces due to EFs, it can lead to a
disruptive locked mode. If it is induced by RMPs with higher (m,n) rational numbers, island-driven transport can reduce the
steepness in the edge profiles below the instability boundary of edge-localized modes (ELMs) [3]. One of the critical questions
for EF correction (EFC) and RMP ELM suppression is to determine the onset point, such as field penetration threshold in terms
of the resonant field amplitudes, just before the bifurcation occurs.

The prediction of field penetration thresholds requires resolving complex boundary layer phenomena near the rational
surfaces. One of the best theoretical approaches to incorporate extended physics is the asymptotic matching for the narrow
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resonant layers, as it has been pioneered by R. Fitzpatrick et al [4, 5, 6]. Assuming the region outside the layer (outer layer)
is governed by ideal MHD, a magnetic perturbation can be determined in outer layers provided the so-called ∆ parameter.
Particularly in the linear phase, which includes the onset point of the field penetration, the layer response is in fact completely
characterized by ∆. As well known since the tearing mode was analyzed first by Furth-Killeen-Rosenbluth (FKR), ∆ rep-
resents the screening currents within the layer preventing the resonant field and must be equivalent to ∆in = [d lnψ/dx]+−
across the layer where ψ is the helical flux. These screening currents create an electromagnetic torque δj⃗× δB⃗, slowing down
rotation against viscous restoring torque and increasing δj⃗ × δB⃗ rapidly towards the so-called natural frequency. The linear
assumption breaks down at this point, involving nonlinearly growing islands, where we define the onset of field penetration.

Earlier theories based on a slab representation had been extended successfully to identify 10 distinct drift-MHD regimes,
highlighting the complexity of layer response. Unfortunately, none of these regimes show the scaling characteristics observed
in the field penetration threshold due to EFs, sparking extensive discussions on the effects of nonlinearlity [7]. Nevertheless,
some of scaling such as the strong correlation with density ne or toroidal field BT appears to be more universal than what
would be expected when it occurs only in nonlinear regimes. This motivates our recent work on extended two-fluid drift-MHD
in linear phase as described here. There are two new elements in this extension; electron viscosity and parallel ion flow. The
electron viscosity µe is often ignored compared to the ion viscosity µi, assuming classically µe/µi ∼

√
me/mi. This is

appropriate for ion dynamics, but not electron dynamics, since the electron viscosity competes with other small effects such
as resistivity, not with the ion viscosity. Indeed the electron viscosity turns out to be critical in the parametric scaling for high
viscous regime which is relevant for most of tokamak operations [8, 9]. The incorporation of the parallel ion flow is shown to
be more instrumental in layer response not only because it shifts the natural frequency but also it resolves the singularity near
the natural frequency in linear regimes [10]. This effect becomes more prominent when plasma β increases and ion gyroradius
decreases, or (cβ/D)2 as will be described later, and may prohibit the field penetration entirely - a surprising outcome.

The modeling extension has been conducted in three different approaches. First, analytic treatments are used whenever it
remains tractable, by asymptotic matching in Fourier space. It is possible to include electron viscosity relatively in a straight-
foward manner but it requires multiple layer divisions in case of parallel ion flow. When it is possible to couple the system
of equations in Fourier space, a Riccati transformation is used to estimate the ∆ more accurately while verifying analytic
predictions. The full inclusion of parallel flow effects is done only numerically in configuration space, but some of its key
ingredients such as the natural frequency shift are also remarkably verified by new analytic methods. The full layer solver
is implemented under SLAYER code [11], which has been integrated to the GPEC code package for the prediction of field
penetration threshold in actual experiments. Here we will present a part of experimental applications using only the local
parameters for a limited dataset, but it is possible to apply this framework for the field penetration threshold database with fully
reconstructed profiles as it has been recently attempted for RMP ELM suppression [12].

This paper is organized as follows. First our theoretical background of drift-MHD model to evaluate ∆ and field penetration
thresholds will be summarized in Sec. 2. Sec. 3 will highlight new physics understanding along with electron viscosity and
its parametric dependencies, and also ion parallel flow which can strongly screen field penetration process. Sec. 4 will show
the experimental applications for locked mode threshold database of Ohmically heated cases, with local parameters as well as
implication to parametric scaling projection.

2. THEORETICAL BACKGROUND OF DRIFT-MHD LAYER MODEL

2.1. Linearized drift-MHD equations

The drift-MHD model in a narrow slab layer has been developed for magnetic field B⃗ = ∇⃗ψ× ẑ+(B0 +Z(1+ τ)/di)ẑ and
flow V⃗ = ∇⃗ϕ × ẑ + Vz ẑ, where B0 is a constant magnetic field along the symmetry direction ẑ, τ = Ti/Te, ion skin depth
di ≡

√
mi/n0e2µ0/a with minor radius a. The radial direction is represented by x = r − rs with r is the radial flux label

and r = rs is the radial position of the resonant surface having q = m/n. Linearizing ẑ· and ẑ · ∇⃗× component from the
generalized Ohm’s law, and ẑ · ∇⃗× and ẑ· component from ion momentum equation combined with the pressure evolution,
respectively, against a perturbation ∝ ei(mθ−nϕ) = eiky , one can obtain:

ix(Z̃ − ϕ̃) = iϵ(Qe −Q)ψ̃ + ϵ3
(
∇2ψ̃ − (1 + τ)Pe∇2Ṽz

)
− ϵ5(1 + τ)Pe

D2

c2β
∇4ψ̃, (1)

ic2βxṼz = iϵ(QZ̃ −Qeϕ̃)− iϵ2D2x∇2ψ̃ − ϵ3C2∇2Z̃ − ϵ5PeD
2(∇4ψ̃ −∇4Z̃), (2)

ix∇2ψ̃ = iϵ(Q−Qi)∇2ψ̃ − ϵ3
(
P∇4(ψ̃ + τZ̃) + Pe∇4(ψ̃ − Z̃)

)
, (3)

ixZ̃ = iϵ(QṼz +Qeψ̃)− ϵ3(P + Pe)∇2Ṽz − ϵ5Pe
D2

c2β
∇4ψ̃. (4)

This constitutes the so-called four-field model for the perturbed (ψ,Z, ϕ, Vz). It is clear that the solutions to the leading
order O(1) are given by Z̃ = ϕ̃ = Ṽz = 0 and ∇2ψ̃ = 0, except x = 0 which exhibits the boundary layer phenomena. In a
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slab geometry near x = 0, ∇2ψ̃ = d2ψ̃/dx2 − k2x = 0. The solution of this ideal outer-layer equation asymptotes linearly
towards the boundary layer by

lim
x→0

[
∆

ψmn
+∆′

]
→
[
d lnψ

dx

]+
−
← lim

X→∞
∆in. (5)

Here the LHS represents the [d lnψ/dx]+− from the outer layer, including the contributions from the external perturbation
(such as EF or RMP) ∆ and from the internal perturbation ∆′ which is often named tearing mode index. The small parameter
is defined as ϵ ≡ (η/k)1/3 = rsS

−1/3 with the Lundquist number S. The set of parameter (Q,Qe, Qi, cβ , C
2, D, P, Pe) is

normalized accordingly, representing E⃗ × B⃗ rotation (including the linear growth rate) by Q, electron and ion diamagnetic
rotation by Qe and Qi, plasma β by cβ , conductivity (or diffusivity) by C2, ion skin depth (or ion gyro-radius) by D, ion and
electron viscosity by P and Pe, respectively. Note that C2 = c2β + (1 − c2β)K where K is the conductivity. Recent work
by R. Fitzpatrick also includes the perpendicular diffusivity P⊥ [13] which becomes identical to our formulation by letting
C2 = P⊥. The viscosities and conductivity scale as O(ϵ3) whereas all the others (except cβ) scale linearly with O(ϵ). Here
we essentially follow the asymptotic principle of maximal complexity to keep all relevant information in the layer treatments.

Using the stretch variable for the layer x = ϵX , one can obtain the full linear drift-MHD equations:

i(Q−Qe)ψ̃ = iX(ϕ̃− Z̃) + d2ψ̃

dX2
− (1 + τ)Pe

(
d2Ṽz

dX2
+
D2

c2β

d4ψ̃

dX4

)
, (6)

iQZ̃ = iQeϕ̃+ iD2X
d2ψ̃

dX2
+ ic2βXṼz +

(
c2β + (1− c2β)K

) d2Z̃
dX2

+ PeD
2

(
d4ϕ̃

dX4
− d4Z̃

dX4

)
, (7)

i(Q−Qi)
d2ϕ̃

dX2
= iX

d2ψ̃

dX2
+ P

(
d4ϕ̃

dX4
+ τ

d4Z̃

dX4

)
+ Pe

(
d4ϕ̃

dX4
− d4Z̃

dX4

)
, (8)

iQṼz = −iQeψ̃ + iXZ̃ + (P + Pe)
d2Ṽz

dX2
+ Pe

D2

c2β

d4ψ̃

dX4
. (9)

These equations will determine ψ and thus ∆in by

ψ̃(−X) = ψ̃(X)→ ψmn

[
1 +

∆̂

2
|X|+O

(
1

X

)]
, (10)

where ∆̂ = ϵ∆in. This problem is highly steep due to the exponential (or oscillatory) behaviors in the infinite domain X ∈
(0,∞), but has been successfully solved based on the matrix Riccati transformation. The full procedure is well documented
in [10] and thus we will present only its major implications in Sec. 3.2.

2.2. Fourier and Riccati Transforms

The set of equations can be further simplified by Fourier transform, from a field F̃ (p) = (ψ̃, Z̃, ϕ̃, Ṽz) to F̄ = (ψ̄, Z̄, ϕ̄, V̄z)

with F̄ =
∫
c
F̃ (X)eipXdX . This becomes particularly useful in the condition where Ṽz can be ignored. The Ped

2Ṽz/dX
2

in Eq. (6) can be ignored simply when Pe ≪ (Q+Pp2∗)
2/Pp4∗, compared the the last term, and c2βXṼz can be ignored when

c2β/D
2 ≪ (Pe/P )p4∗(Q+ Pp2∗)

2. Although it depends on layer width p∗ in p-space, the two conditions are easily met in low
Q by Pe ≪ P and c2β/D

2 ≪ PeP except in very high β condition. Then one can arrive at the three-field equation [8]:

i(Q−Qe)ψ̄ =
d(ϕ̄− Z̄)

dp
− p2ψ̄ − p4Pe

D2

c2β
(1 + τ)ψ̄, (11)

iQZ̄ − iQeϕ̄ = −D2 d
2(p2ψ̄)

dp2
− c2βp2Z̄ + PeD

2p4(ϕ̄− Z̄), (12)

i(Q−Qi)p
2ϕ̄ =

d(p2ψ̄)

dp
− Pp4(ϕ̄+ τZ̄)− Pep

4(ϕ̄− Z̄). (13)

Here we also ignore K but in case with high conductivity or high perpendicular viscosity, one can simply replace cβ → C

in Eq. (12). These equations can be analytically solved since they are combined by the 2nd order ODE with the new variable
Y ≡ ϕ̄− Z̄ by:

d

dp

[ p2

D2(τ + 1)Pe

c2β
p4︸ ︷︷ ︸

From parallel Ohm’s law

+p2 + i(Q−Qe)

dY

dp

]
− p2G(p)Y = 0, (14)

3
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which G(p) given by, with P + Pe
∼= P [9],

G(p) =

From the curl of Ohm’s law︷ ︸︸ ︷
PPeD

2(τ + 1)p6 +
(
iPeD

2(Q−Qi)+Pc
2
β

)
p4 + i(c2β + P )(Q−Qi)p

2 −Q(Q−Qi)

PD2(τ + 1)p4 +
(
i(Q−Qi)D2 + c2β

)
p2 + i(Q−Qe)

. (15)

It is already shown that the proper matching condition for the outer layer is Y → Y0(1 + ∆̂/πp) [6]. As it stands, this
equation for Y (p) is not fully analytically tractable but can be studied asymptotically in each parametric regime. For com-
parison, we also developed a numerical scheme to solve the Eq. (14) based on a Riccati transformation W = (p/Y )dY/dp,
resulting:

dW

dp
=W

 4D2p3(τ+1)Pe

c2
β

+ 2p

D2p4(τ+1)Pe

c2
β

+ i(Q−Qe) + p2
− 1

p

− W 2

p
+ pG(p)

(
D2p4(τ + 1)Pe

c2β
+ i(Q−Qe) + p2

)
. (16)

The Riccati transformation removes the exponential behavior of the solutions and enhances the numerical reliability. The
asymptotic behavior of physically relevant solution becomes W → −1 and dW/dp→ π/∆̂ as p→ +0. We will present first
new analytic results for electron viscosity based on Eq. (14) while numerically validating the asymptotic behaviors based on
Eq. (16), and then show the full numerical results based on Eqs. (6-9) to include parallel ion flow effects.

2.3. Torque balance and resonant field penetration

Asymptotic matching between inner and outer region implies a finite helical flux ψmn and thus islands, inducing an electro-
magnetic torque which in turn slows down rotationQ from an equilibrium valueQ0 against the viscous torque. The slab model
predicts that this balance is no longer possible when the resonant field is larger than a threshold and that the ψmn can grow
indefinitely. In the slab model, this field penetration threshold is predicted as

δcrit =

[
br(rs)

Bϕ

]2
crit

= max
[
2P (Q0 −Q)

Sκ̂
× |∆̂(Q)− ∆̂′|2

Im[∆̂(Q)]

]
, (17)

where κ̂ ∼ O(1) is a toroidal correction factor for viscosity [6]. The second part of RHS represents the inverse of the
electromagnetic torque, τϕ ∝ −Im[∆̂(Q)]/|∆̂(Q) − ∆̂′|2. Ignoring ∆̂′ ≪ 1 as often assumed for tearing-stable case, the
electromagnetic torque is given by τϕ ∝ Im(1/∆̂). One can see τϕ →∞ in ∆̂ = 0 which occurs at Q = Qe essentially in all
regimes when Q slows down, as called a natural frequency. As will be shown, however, the inclusion of parallel flow removes
this singularity by leaving Re[∆̂] ̸= 0 even if Im[∆̂] = 0.

Eq. (17) can be analytically estimated if ∆̂ is given, in terms of (Q,Qe, Qi, cβ , C,D, P, Pe). One can then obtain scaling
in terms of dimensionless physical parameters or operational parameters by Q = S1/3ωEτH , Qi(e) = −S1/3ωi(e)∗τH ,
C = cβ =

√
β/(1 + β), D = S1/3ρs/rs, P = τR/τV =

√
mi/mePe, with E × B angular frequency ωE , ion (electron)

diamagnetic frequency ωi(e)∗, ion Larmor radius with electron temperature ρs. The hydrodynamic, resistive, and viscous time
scales, τH , τR, and τV are also defined appropriately in the slab. It is of great interest to predict and reproduce the empirical
form of parametric scaling [br(rs)/Bϕ]crit ∼ nαn

e TαT
e BαB

ϕ RαR
0 as will be described in the rest of sections.

3. UNDERSTANDING OF HIGH-ORDER MHD EFFECTS

3.1. Electron viscosity and parametric scaling

Earlier work without electron viscosity and parallel ion flow effects identified 10 different regimes [4]. Two nonconstant-ψ
regimes with high rotation are Inertial (I) and Visco-Inertial (VI) regimes. Eight constant-ψ regimes are a pair of Resistive-
Inertial regimes (RIi,RIii), Visco-Resistive regimes (VRi,VRii), Semi-Collisional regimes (SCi,SCii) and Hall-Resistive regimes
(HRi,HRii). In particular, two most relevant regimes for fusion with P > 1 and low Q are shown to be SCi and HRi. An issue
is that neither of two is consistent with the well-known strong density and inverse-Bϕ scaling. It is the electron viscous effect
that shows the empirically feasible scaling for the first time, even if one follows the classical assumption as Pe =

√
me/miP

[8]. The modified SCi regime by electron viscosity is identified in the limit of (D2(τ + 1)Pe/c
2
β)p

2 ≫ 1 and Q≫ PeD
2p4.

Then, Eq. 14 reduces to
d

dp

[ 1

p2
dY

dp

]
− iPe

Q−Qi

c2β
Y ≈ 0. (18)

This form is known as Emden-Fowler differential equation and can be analytically solved, giving

∆̂SCiPe =
3Γ(1/4)i7/4πc

1/2
β (Q−Qe)(Q−Qi)

3/4

8Γ(7/4)D2(τ + 1)P
1/4
e

. (19)
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FIG. 1. Q− P space map identifying the different parameter regimes with cβ = 0.1, D = 1, Qe = −Qi = Q/2,
and Pe =

√
me/mDP = P/α. New regimes with electron viscosity are shown in gray.

FIG. 2. (a) Transition across HRi, SCi, and I regimes in Q-space showing the asymptotic predictions and SLAYER
results in each regime for both including (Pe ̸= 0) and neglecting (Pe = 0) electron viscosity. Here, cβ = 0.1,
D = 1, Qe = −Qi = Q/2, and P = 10. Taken from Ref. [8]. (b) Transition from the VRii to HRi, and to EV
regime. Q = 10−3, Qe = −Qi = Q/2, D = 0.2, cβ = 0.1 and Pe/P ∼= 60. Taken from Ref. [9].

Notably, this regime is driven only by electron viscosity in the parallel Ohm’s law, Eq. (11). The modified HRi regime
by electron viscosity, HRiPe, has also been resolved when assuming electron viscosity only in the parallel Ohm’s law, but it is
quickly shown that the main correction for HRi should arise from electron viscosity in the nonparallel Ohm’s law, Eq. (12).
This is named the electron-viscous (EV) regime in the limit of (D2(τ + 1)Pe/c

2
β)p

2 ≫ 1 [9]. Eq. (14) reduces to

d

dp

[ 1

p2
dȲ

dp

]
− D2(τ + 1)P 2

e

c2β
p4Ȳ ≈ 0 (20)

and results in

∆̂EV =
3iπΓ(5/8)c

5/4
β (Q−Qe)

83/4Γ(11/8)D5/4(τ + 1)5/8P
1/4
e

. (21)

Fig. 1 illustrates the new SCiPe and EV regimes in the limit of large P and small Q. Note that other new regimes such
as VRiPe, RIiPe, SCiiPe are also shown. They are however narrowly spaced and less significant, and also need to be updated
by electron viscosity in non-parallel Ohm’s law. These asymptotic results are numerically verified against SLAYER numerical
calculations, as illustrated by the two graphs in Fig. 2. In both (a) and (b), one can see that each asymptotic regime is precisely
reproduced by numerical SLAYER results as a function of (a) rotation or (b) viscosity.

The parametric dependencies of field penetration threshold are also significantly modified from the earlier ones, as sum-

5
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marized here.

δc,SCi ∼ n1/4T 1/8
e B

−5/4
ϕ R−1

0 −→ δc,SCiPe ∼ n5/8
e T 1/16

e R
−3/4
0 B

−13/8
ϕ (22)

δc,HRi ∼ n1/4T 1/8
e B

−5/4
ϕ R−1

0 −→ δc,HRiPe ∼ neR
−1/2
0 B−2

ϕ −→ δc,EV ∼ n11/16
e T−5/8

e R
1/8
0 B

−3/4
ϕ (23)

An important change with electron viscosity is seen particularly in density scaling αn = 0.6 ∼ 0.7 which is stronger
than the previous SCi or HRi scaling. The stronger density scaling is consistent with longstanding experimental observations.
Note that there are still gaps from other empirically known scaling, for example, the so-called 2017 ITPA Ohmic scaling
δc ∼ n1.4

e R0.81
0 B−1.8

T β−0.86
N in Ref. [14]. However, if one scales βN ∝ neTeB

−1
T R0 by fixing the aspect ratio (note there is a

typo for the same argument in Ref. [14]), the 2017 scaling becomes δc ∼ n0.54T−0.86
e R−0.05

0 B−0.94
T , close to the EV regime

scaling. This scaling for density and Bϕ is also surprisingly close to new empirical scaling over the full database including
L and H modes [15]. Nonetheless, the inter-parametric dependencies as well as the regimes of each data point can be widely
different from a device to another, and thus this simple comparison based on a single asymptotic limit is not always appropriate.

3.2. Ion parallel flow shielding for field penetration

In high-beta condition, it may be no longer c2β/D
2 ≪ (Pe/P )p4∗(Q + Pp2∗)

2 and then becomes necessary to include V̄z .
The four-field model including this perturbed ion parallel flow has been successfully developed as described in detail by Ref.
[10] and recently incorporated into SLAYER code. This full solver in configuration space verifies various asymptotic limits
as well as the reduced Riccati scheme in the momentum space. In addition, it is shown that the natural frequency Qnat,
which can be identified by Im[∆̂(Qnat)] = 0, is shifted from Qe and generates the misalignment with the zero crossing point
of Re[∆̂(Q)] = 0. A surprising consequence is then that the electromagnetic torque remains finite even at Q = Qnat as
illustsrated in Fig. 3. This implies that the magnetic islands remain finite and a torque balance remains always possible. If the
size of magnetic islands is still smaller than nonlinear layer width, field penetration may be entirely prohibited.

FIG. 3. (a) Reduced electromagnetic torque ∝ Im(1/∆̂) and natural frequency Qnat shift due to ion parallel flow
Vz when cβ increases, with the fixed Qe = −Qi = 0.1, P = 10, D = 1.0. (b) Comparison between full SLAYER
calculations and analytic prediction for Qnat.

This behavior is also reproduced by newly extended analytic theory. Retaining V̄z , Eq. (12) becomes

iQZ̄ − iQeϕ̄ = −D2 d
2(p2ψ̄)

dp2
− c2βp2Z̄ + c2β

dV̄z

dp
+ PeD

2p4(ϕ̄− Z̄), (24)

and adds the previously ignored equation

iQV̄z + iQeψ̄ =
dZ̄

dp
− (P + Pe)p

2V̄z + Pe
D2

c2β
p4ψ̄. (25)

The four-field equation can be arranged into a single 4th order ODE for Y ≡ ϕ̄ − Z̄ under the assumption that Pe ≪
(Q+ Pp2∗)

2/Pp4∗. The solution to this equation can be analytically treated by breaking three separate layers down in p-space
where unique dominant balances occur as opposed to the two-layer matching technique for the three field model [6]. This
method can be successfully applied to several regimes including HRi and SCi to predict a correction to ∆̂ which results in a
shift in the natural frequency Qnat from Qe in agreement with numerical results from SLAYER. For example, the full form of
the inner layer ∆̂ for the HRi regime is

∆̂HRiV z = iπ(Q−Qe)

(
2
Γ(3/4)

Γ(1/4)

(
c2β

(1 + τ)D2

)1/4

+(27/4)
4

5

Γ(13/8)

Γ(3/8)
(1+ τ)P

Q

Q−Qe

(
c2β

(1 + τ)D2P 2

)5/8)
, (26)

where the second RHS term represents the correction from ion shielding effects. Fig. 3 (b) shows an excellent agreement
between the numerical and analytic ∆̂ for the HRi regime.
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4. FIELD PENETRATION SCALING PROJECTION AND VALIDATION

4.1. Scaling with operational parameters

The scaling of new regimes is aligned better with general observations, but in reality each asymptotic regime is not clearly
isolated and experimental data points can lie in the transition or vary across the regimes. There are also two major uncertainties
in the previous scaling. First is the assumption of zero E⃗ × B⃗ rotation, i.e. Q = 0, which is not generally valid other than
purely Ohmic plasmas. This assumption has been justified because error field data was initially populated largely in Ohmically
heated cases. It is however necessary to predict the error field threshold in much wider parametric domains including L or
H-modes with auxillary heating. Another uncertainty lies in the evaluation of viscosity, such as P or Pe. Scaling discussed
by the previous section is obtained by assuming that momentum confinement time is roughly same as energy confinement
time in Limited Ohmic Confinement (LOC) regime. However, viscosity can be easily anomalous and often better estimated by
P = χϕ/(η/µ0) with χϕ either from interpretive (or predictive) transport simulations or empirical values.

FIG. 4. Variation of field penetration threshold as a function (a,b) density and toroidal field, (c,d) density and
rotation. (a,c) and (b,d) are without and with the electron viscosity and ion parallel flow.

So here we explored overall parametric scaling using SLAYER simulations, with and without electron viscosity + ion
parallel flow to highlight the difference. Our focus is to variation of δB/Bϕ as a function of ne, BT , and also rotation, in wide
ranges while fixing other parameters. Fig. 4 shows the results for 3×1018m−3 < ne < 8×1019m−3, 0.3T < Bϕ < 8T , and
−20krad/s < ωE < 50krad/s, with the Te = Ti = 1keV, R0 = 1.0m, rs = 0.5m, q = m/n = 2/1, s = (rs/q)(dq/dr) =

2.0, Zeff = 2.0, κ̂ = 1.0, and P = 3.0 and Pe
∼= P/60.0. The positive density and negative Bϕ scaling, as well as the

positive scaling for the electron flow ω⊥,e ≡ ω+ ωe∗ is also clearly represented. The modification by electron viscosity + ion
parallel flow, (b,d) compared with (a,c), may be not so clear in the contour plot, but becomes apparent by regression analysis
resulting in:

δOLD ∼ n0.56B−0.75
ϕ ω0.67

⊥,e −→ δNEW ∼ n0.82
e B−1.07

ϕ ω0.79
⊥,e . (27)

4.2. Applications to locked mode database

FIG. 5. Comparison of empirical field penetration
threshold data with SLAYER based on slab torque
balance, at the onset of locked modes in NSTX,
DIII-D, CMOD ohmically heated plasmas.

Our analytic and numerical developments have been under inves-
tigations against experimental data points. Earlier SLAYER code
without electron viscosity or ion parallel flow was already inte-
grated with GPEC code package. GPEC can provide externally
applied ∆ due to EF or RMP to match ∆in = ∆̂/ϵ in Eq. (5) upon
kinetic profile data as its first application was already attempted
in [12]. Here we report another application of earlier version to
q = 2/1 locked mode threshold data in Ohmically heated plas-
mas, especially when electron temperature data is available. Beam
heated plasmas are excluded due to external momentum injection
which can modify our torque balance model in slab. A successful
example is shown in Fig. 5, with caveats about unknown local pa-
rameters such as Ti = Te, P = 3.0, and Q = 0. Although this
example illustrates a possibility to predict field penetration thresh-
olds, experimental validation in the future must be carried out with
accurate kinetic profiles and transport coefficients such as P or Pe,
which our extended model is heavily dependent upon.
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5. CONCLUDING REMARKS

The two-fluid drift-MHD model has been successfully extended with electron viscosity and parallel ion flow. It is shown that
electron viscosity can enhance positive density and negative toroidal field scaling for field penetration threshold, consistent
with experiments despite the smallness of electron viscosity due to delicate balance in electron dynamics. Parallel ion flow
perturbation becomes more important in higher β and can substantially shield resonant field along with shifted natural fre-
quency. These new findings are shown analytically and verified by a full configuration solver as well as Riccati solver in
momentum space, which are implemented in SLAYER code under GPEC code package. Experimental validations against
error field and RMP database have been attempted, showing its prospect when accurate profile measurements or predictions
are offered. Future work will also include the effects of neoclassical viscous effects, directly incorporating anisotropic tensor
in drift-MHD layer equations, as its effects can be important in low collisionality conditions.
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