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• In ICF, compositional homogeneity of cryogenic D–T fuel targets is critical for fusion performance.

• Isotopologue fractionation induces a radial concentration gradient within the solid D-T layer and alters the equilibrium composition of the central D-T gas. 

• A comprehensive numerical framework was developed to simulate the compositional distribution in D-T mixture during solidification.

• The detrimental effects of composition inhomogeneity on fusion efficiency were examined.

ABSTRACT

SIMULATION 1: Compositional distribution during unidirectional solidification

• Simulation results agree well with the theoretical values, confirming the 

validity of the numerical model

• Relatively high r/R is recommended in target design

• D atom distribution in the solid exhibits a radial mole fraction gradient;

D atom content in the gas phase is significantly in excess

• Inhomogeneity in target may affect the ICF performance in multiple stages

These findings offers guidance for predicting and improving 
compositional homogeneity in target design

CONCLUSION
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BACKGROUND

Numerical simulation method was developed to quantify the 
compositional distribution in D-T target during solidification

SIMULATION 3: Compositional distribution in D-T target

SIMULATION 2: Compositional distribution during radial solidification
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Relatively high r/R is recommended in target design
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D2 distribution in the solid layer exhibits a radial mole fraction gradient

D atom content in the gas phase is significantly in excess

Empirical Formulas for 𝑷𝒊
𝒔 (Pa) vs. T (K) [2]

Raoult's law:    𝑃𝑖
𝐺 = 𝑃𝑖

𝑆𝑋𝑖
𝑆

𝑋𝑖
𝐺 =

𝑃𝑖
𝐺

σ𝑖 𝑃𝑖
𝐺

𝑃𝑖
𝑆  : Equilibrium vapor pressure of 

the pure component i 

𝑃𝑖
𝐺  : Partial pressure of the component i

𝑋𝑖
𝐺  : Mole fraction of the component i

DISCUSSION  
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D-T reaction: D + T → 4He + n

Optimal Ratio:      D : T = 1 : 1
T2-rich areas:        D : T < 1 : 1
D2-rich areas:        D : T > 1 : 1

Rayleigh-Taylor instability:

1) Radial density gradient
2) Irregularities along isodensity surfaces

Simulation results show good agreement with the theoretical values
confirming the validity of the numerical model
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Unidirectional Solidification Simulated versus theoretical
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Models with different r/R

D2:T2 = 1:1 D2:DT:T2 = 3:4:3 [2]

Radial distribution of

D atom content in solid
0.480 ∼ 0.600 0.493 ∼ 0.571 

D atom content in gas 75.6% 67.9% 

Ignoring Beta-decay Ignoring Gravity

D- or T- enriched areas may

reduce fusion reaction efficiency

Rayleigh-Taylor instability can 
threat to implosion uniformity Parallel Radial

The authors acknowledge the support of the Institute of Laser Engineering at the 
University of Osaka and the Hydrogen Isotope Research Centre at University of Toyama. 
This work was supported by JST, the establishment of university fellowships towards the 
creation of science technology innovation, Grant Number JPMJFS2125, the QST 
Research Collaboration for Fusion DEMO and JSPS KAKENHI (grant number: 22H01204).

ACKNOWLEDGEMENTS 

Cryogenic D-T target for ICF Fractionation


	Slide 1

