

Federal Environmental, Industrial and Nuclear Supervision Service

Scientific and Engineering Centre for Nuclear and Radiation Safety

Safety Regulation of Fusion Facilities in the Russian Federation

Senior Scientific Researcher of Laboratory on Safety of Innovative Nuclear Installations NPP & INI Safety Division, SEC NRS

Mikhail Polianskii

30th IAEA Fusion Energy Conference (FEC-2025), 13-18 October, 2025 Chengdu, People's Republic of China

Bodies of the State Regulation of Safety in the Use of Atomic Energy

Rostechnadzor

Technical aspects of nuclear and radiation safety **National regulatory authority**

Ministry of Emergency **Situations**

Federal Medical-Biological Agency

Rospotrebnadzor

Ministry of Natural Resources and Environment

Rosprirodnadzor

Fire safety

Sanitary and hygienic aspects of radiation protection of personnel

Sanitary and hygienic aspects of radiation

protection of the population

Environmental protection

Decree of 03.07.2006 Nº 412

The activities of SEC NRS

Rostechnadzor (regulatory authority)

SEC NRS

(scientific and technical support to the authorized state safety regulatory authority)

Rostechnadzor

Development and implementation of federal rules and regulations

Licensing of activities in the field of atomic energy use

Supervision of nuclear safety and physical protection

Emergency response

SEC NRS

Development of draft federal rules and regulations

Safety review

Information support

Scientific and technical support

Development of Fusion Facilities in Russia

(http://government.ru/rugovclassifier/929/)

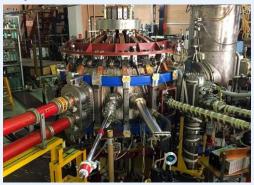
Federal project «Fusion Energy Technologies»

Upgraded tokamak
T-15MD – a platform for advanced
experimental research
of high-temperature plasma

Physical start-up – 2021 г. Commissioning – 2023 г. Max. parameters – 2030 г.

- Pulse duration over 30 s
- Heating capacity not lower than 20 MW
- Advanced diagnostic systems

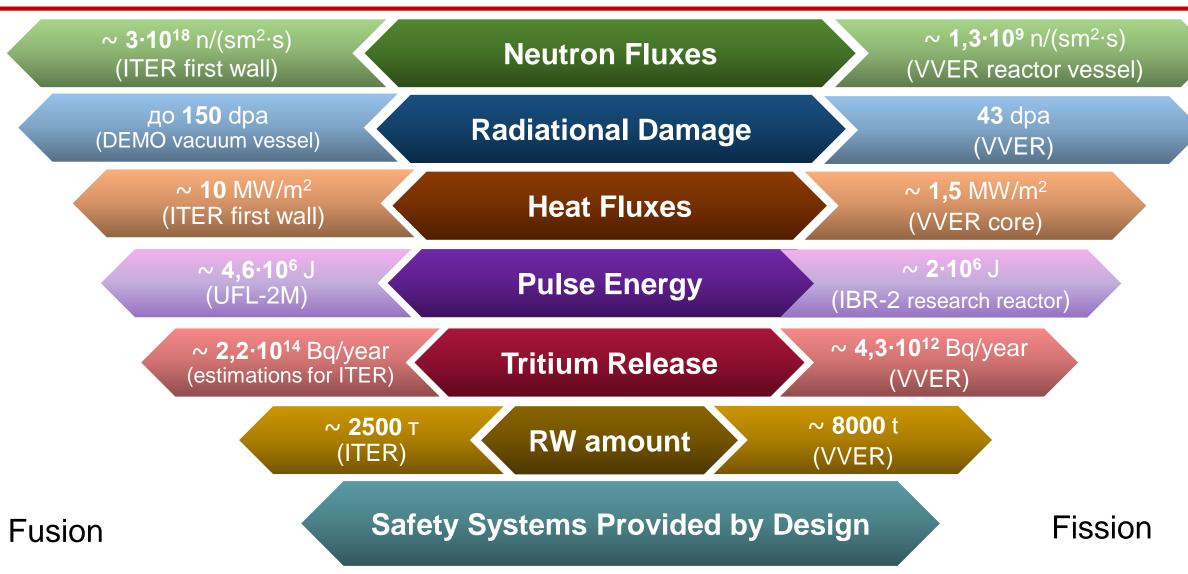
Tokamak with Reactor Technologies (TRT)


Based on a high-temperature superconductor with a set of innovative technological solutions

Conceptual design – 2024 Engineering design – 2025-2029 Construction – after 2030

- Magnetic field \sim 8 T
- D-D plasma heating capacity up to 40 MW
- Pulse duration over 100 s

Spherical tokamak Globus-M2

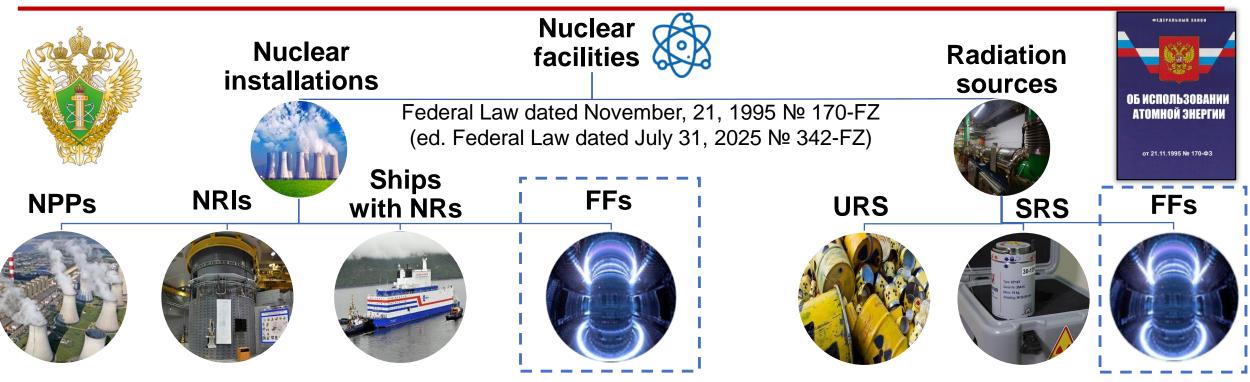

Laser fusion facility UFL-2M

 VI Scientific and practical conference "ATOMSTROYSTANDART-2025" (https://conf.atomsro.ru/wp-content/uploads/2025/05/004-llina rosatom.pdf)

Hazard Factors Comparison

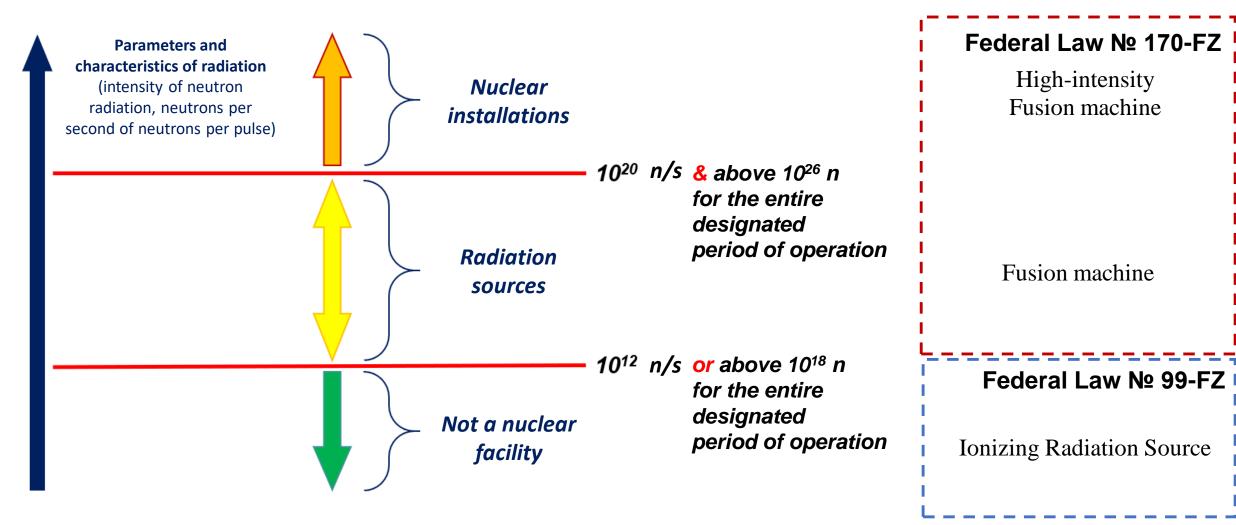
Basic terms and definitions

The Glossary **«Fusion Facilities»** was published in 2023


- ➤ Fusion Machine machine, designed to realize the nuclear fusion reaction of light nuclei due to magnetic or inertial plasma confinement
- ➤ Fusion Installation Fusion Machine, which is <u>not containing</u> or capable of generating (fissionable) <u>nuclear materials</u>
- ➤ Fusion Reactor Fusion Machine, which <u>uses nuclear materials</u> and neutrons formed as a result of the nuclear fusion reaction of light atoms, initiate the nuclear fission reaction of heavy nuclei in nuclear materials in a subcritical core (blanket)
- Fusion Facility (FF) structures and facilities with fusion reactors or installations, designed to generate ionizing radiation and (or) energy

Classification of Fusion Facilities (FFs) in the Russian Federation

Fusion Facility will not be classified as a nuclear facility if the neutron intensity is less than the criterion, which will be set in FRR "General Provisions for Fusion Facilities Safety Assurance"


Regulation and licensing of such installations is carried out by Rospotrebnadzor as **ionizing radiation sources (generating)** in accordance with: Federal Law № 99-FZ of May 4, 2011 "On Licensing of Certain Types of Activity",

Federal Law № 52-FZ of March 30, 1999 "On the Sanitary and Epidemiological Welfare of the Population"

Criteria on Neutron Intensity

In accordance with the Explanatory Note to Federal Law of July 31, 2025 No. 342-FZ https://sozd.duma.gov.ru/bill/835243-8

Classification scheme of Fusion Facilities

Federal Law Nº 99-FZ

Is nuclear fusion reaction being realised? YES YESI Nuclear materials present on site? NO YES Mass/activity of tritium exceeds the limits in the FRR? NO YES Intensity of neutron flux exceeds the limits in the FRR $(10^{20} \text{ n/s } \& 10^{26} \text{ n})$ for classification as nuclear installation? **√** NO Intensity of neutron flux (10¹² n/s *or* 10²⁰ n) YES NO or amount of radioactive materials exceeds the limits in the FRR for classification as nuclear facility?

Federal Law Nº 170-FZ

Nuclear installation (hybrid fusion facility)

Nuclear installation (fusion facility)

Radiation source (fusion facility)

Ionizing Radiation
Source
(not a nuclear facility)

General Provisions (GP) for Fusion Facilities (FFs) Safety Assurance

- > Establishment of safety requirements for FFs at all stages of the life cycle, taking into account the specific hazard factors of fusion technologies
- ➤ Consideration of the specifics, physical features, technologies, and principles of operation of individual systems and components specific to FFs
- Accounting for foreign documents and regulatory approaches
- Taking into account the experience of developing and applying General Provisions for:
 - nuclear power plants
 - nuclear research installations
 - radiation sources

NP-001-15

NP-033-11

NP-038-16

Basic requirements of the General Safety Provisions for FFs

The general safety provisions establish requirements for:

- compliance with established radiation dose limits for personnel and the public, standards for release and discharges of radioactive substances during normal operation and normal operation malfunctions, including design basis accidents
- ➤ **limitation of radiation exposure** to the personnel, the public and the environment in a beyond design basis accident
- ensuring the required quality of systems (components) and works performed
- the main criteria and principles of ensuring safety implemented in the FF design and its systems
- > safety analysis
- supporting and operational documentation
- > action plans for protection of the personnel and the public in case of accidents
- commissioning and decommissioning of FF
- process control

Physical barriers

The FF design shall provide a system of physical barriers on the way of propagation of ionizing radiation and radioactive substances to the environment

- > The number and purpose of barriers shall be determined in the FF design
- > The FF design shall provide measures to protect and preserve the efficiency of the barriers
- > Sufficiency of barriers and measures to protect them shall be justified in the FF design

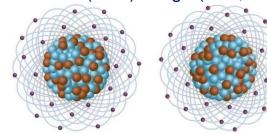
For FF physical barriers can be:

- vacuum vessel
- blanket with nuclear materials (for hybrid installations)
- > boundaries of equipment for handling tritium and other radioactive substances
- boundaries of the rooms / building where the FF is located
- biological protection

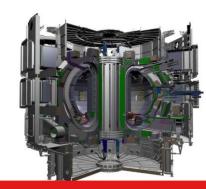
Graded Approach in the Application of the Safety Requirements

Criteria for classification as nuclear installation

Additional requirements


(depending on the factors and degree of danger associated with the characteristics of the FFs, as well as with the use of various technologies, materials, substances)

Tritium usage


- > for tritium-containing systems and components in the rooms where they are located
- for the control of discharges of radioactive substances
- for minimizing the accumulation of tritium in materials
- > to limit the release of radioactive substances, including in case of accidents
- for accounting and control of Special Non-Nuclear Materials (including ³H, ⁶Li) in the State System for Accounting and Control of NMs

Nuclear materials (NMs) usage (238U, 232Th, ...)

- > for systems and components, including for the containment of NMs within established boundaries
- for the exclusion of criticality
- for heat removal from blankets with NMs
- for neutron flux density control in the blankets with NMs
- for accounting and control of NMs
- for the storage of NMs, the handling of NMs

High-intensity Fusion machine

- for control of the fusion reaction
- for protection safety systems
- for probabilistic safety analysis, reliability analysis
- for chemistry regimes of the media in the FFs systems and components
- for development of action plans for protection of the personnel and the public in case of accidents
- for accident management
- > for the personnel training

Conclusions

- ➤ Currently, alongside advancements in fusion technology, significant efforts are underway to expand the atomic energy safety regulatory framework, integrating FF into Russian legislation. The primary objectives for FF safety regulation in the Russian Federation include legislative updates and development of FRRs defining safety requirements for fusion and hybrid systems. (Federal Law of November 21, 1995 No. 170-FZ "On the Use of Atomic Energy")
- Federal Law of July 31, 2025 No. 342-FZ (effective January 1, 2027) was developed with the direct participation of the SEC NRS, and the requirements of FRRs in the field of atomic energy use of for FFs are being developed.
- When developing approaches to safety regulation, international approaches and accumulated experience in regulating the safety of NPPs are taken into account, as well as interaction with organizations involved in the development and further operation of fusion facilities.

FEDERAL ENVIRONMENTAL, INDUSTRIAL AND NUCLEAR SUPERVISION SERVICE

Scientific and Engineering Centre for Nuclear and Radiation Safety

谢谢聆听!

THANK YOU FOR YOUR ATTENTION!