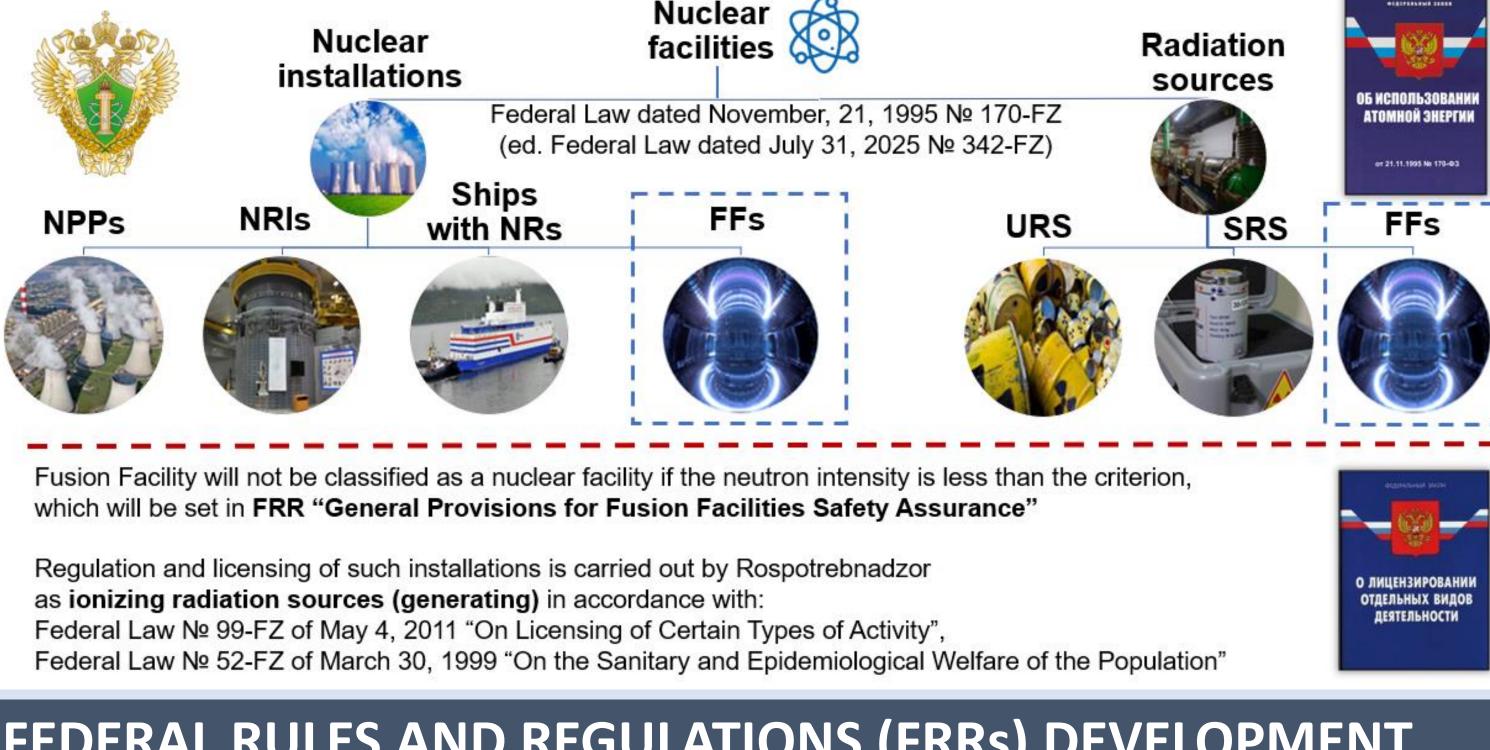
ID: 3378

Safety Regulation of Fusion Facilities in the Russian Federation

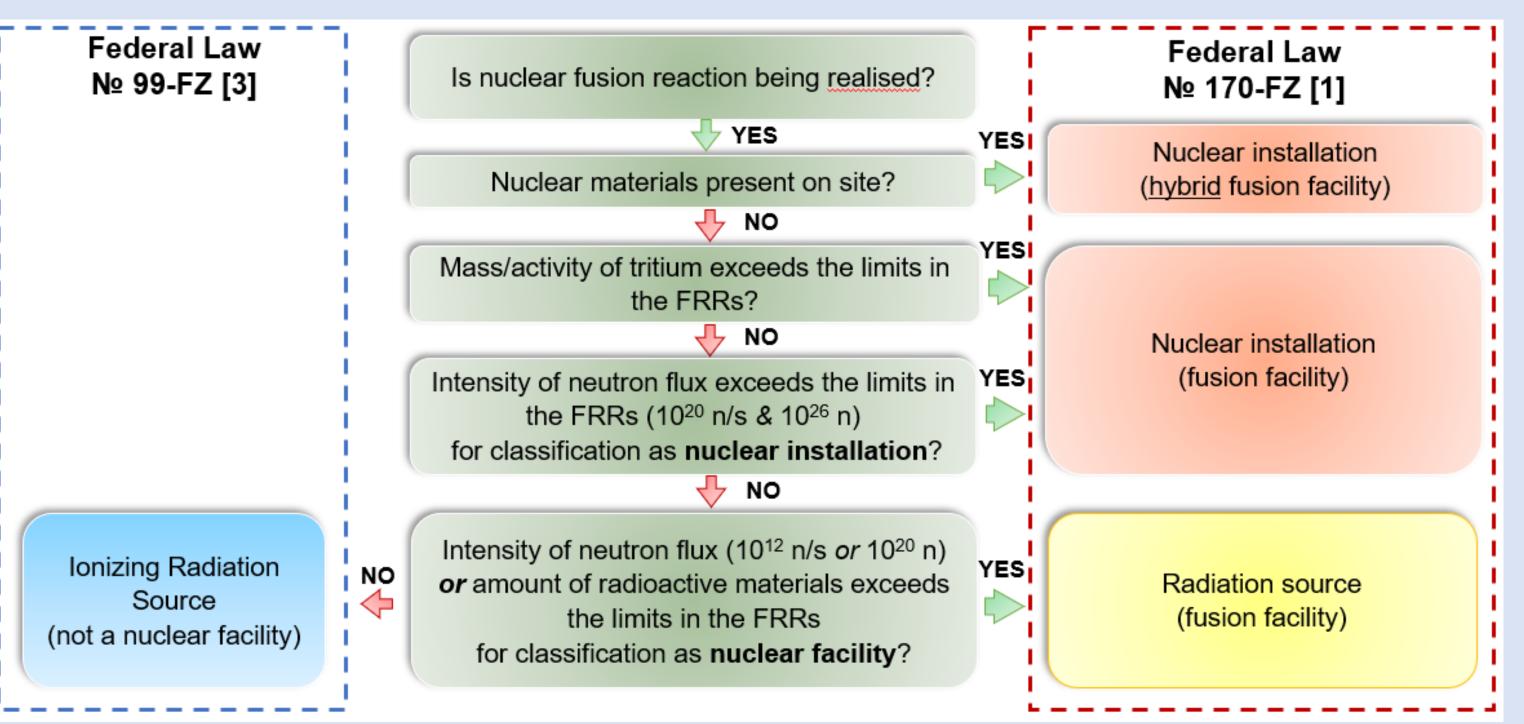

M. Poliasnkii, A. Kuryndin, A. Kirkin, S. Sinegribov, A. Smirnov Scientific and Engineering Centre for Nuclear and Radiation Safety (SEC NRS) polyanskiy@secnrs.ru

ABSTRACT

Development of approaches to regulating the safety of Fusion Facilities in the Russian Federation is underway. Recently amendments to legislation were implemented and the development of new rules and regulations in the field of atomic energy use is in active phase.

BACKGROUND

- •Analysis of the Russian regulatory framework identified the optimal approach: integrating Fusion Facilities into current nuclear facility classifications under Russian law No. 170-FZ [1].
- •In Russian Federation, Fusion Facilities are included in the field of atomic energy use. Federal Law No. 342-FZ [2] (effective January 1, 2027) was developed by Rostechnadzor with the direct participation of the SEC NRS.


FEDERAL RULES AND REGULATIONS (FRRs) DEVELOPMENT

- Developing new federal rules and regulations (FRRs) to ensure the safety of Fusion Facilities, as well as the protection of personnel, the public, and the environment from potential radiation hazards is of high importance.
- Requirements for the design and safety justification of Fusion Facilities classified as nuclear facilities will become legally binding.
- •FRRs shall be applicable to all stages of the life cycle of Fusion Facilities in accordance with the nuclear legislation.

CLASSIFICATION OF FUSION FACILITIES (FFs)

Criteria on Neutron Intensity

Classification scheme of Fusion Facilities

OUTCOME

- •The first edition of the FRR "General Safety Provisions for Fusion Facilities" (GSP FF) has been developed. The document is scheduled to be approved not later than November 30, 2026.
- Key terms and definitions for Fusion Facilities safety regulation in GSP FF, drawing from the published Glossary [4].

GRADED APPROACH

GSP FF outlines proposed graded regulatory approach to impose additional safety standards on fusion and hybrid systems with elevated hazard potential.

Criteria for	Additional requirements
classification	
as a nuclear	
installation	
Tritium usage	 for tritium-containing systems and components in the
	rooms where they are located
	• to control of discharges of radioactive substances
	• to minimize the accumulation of tritium in materials
	• to limit the release of radioactive substances, including in
	case of accidents
	 for accounting and control of Special Non-Nuclear
	Materials (including ³ H, ⁶ Li) in the State System for
	Accounting and Control
Nuclear	 for systems and components, including for the
materials	containment of NMs within established boundaries
(NMs) usage	 for the means of exclusion of criticality
(²³⁸ U, ²³² Th,	• for heat removal systems (from blankets with NMs)
etc.)	• to control of neutron flux density in the blankets
	 for accounting and control of NMs
	 for handling systems and storages of NMs
High-intensity	• to control of the fusion reaction
Fusion	 for protection safety systems
machine	• to the probabilistic safety analysis, reliability analysis
	• for chemistry regimes of the media in the FFs systems and
	components
	• to develop of action plans for protection of the personnel
	and the public in case of accidents
	 for accident management
	• to the personnel training

CONCLUSION

Development of Federal rules and regulations in the field of atomic energy use for Fusion Facilities is important step for providing high level of safety. Development of approaches to safety regulation is based on international approaches as well as accumulated experience in regulating safety of NPPs, research reactors and radioactive sources. Close interaction with design and operation organizations of fusion facilities is also one of the key elements of the effective regulatory framework development.

REFERENCES

- •[1] Federal Law of the Russian Federation of November 21, 1995 No. 170-FZ "On the Use of Atomic Energy". (http://www.kremlin.ru/acts/bank/8503)
- •[2] Federal Law of the Russian Federation of July 31, 2025 No. 342-FZ "On Amending Article 3 of the Federal Law 'On the Use of Atomic Energy'" (http://www.kremlin.ru/acts/bank/52293)
- •[3] Federal Law of the Russian Federation of May 4, 2011 No. 99-FZ "On Licensing of Certain Types of Activity". (http://www.kremlin.ru/acts/bank/33139)
- •[4] Fusion facilities. Glossary. First edition. (https://clck.ru/3PbFAw)