Observation of core ion energy increase caused by the Landau damping of MHD wave in the periphery of LHD plasma

K.Ida^{1,2}, T.Kobayashi^{1,2}, M.Yoshinuma¹, K.Nagaoka^{1,3}, K.Ogawa^{1,2}, T.Tokuzawa^{1,2}, H.Nuga¹ & Y.Kato

IAEA-FEC, 13-18 October 2025 Chengdu China

2025_10_18 9:30 17min+3min

¹ National Institute for Fusion Science, Toki, Gifu 509-5292, Japan

² The Graduate University for Advanced Studies, SOKENDAI, Toki, Gifu 509-5292, Japan.

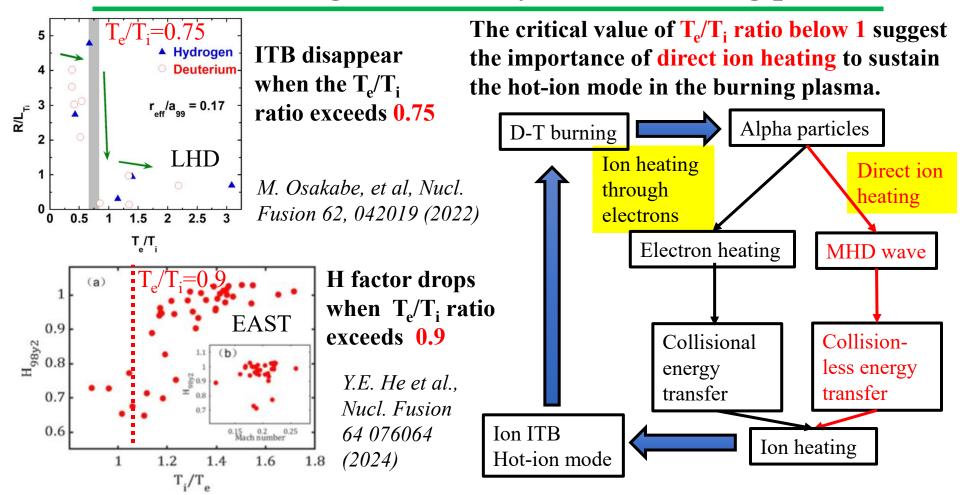
³ Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.

⁴ Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan.

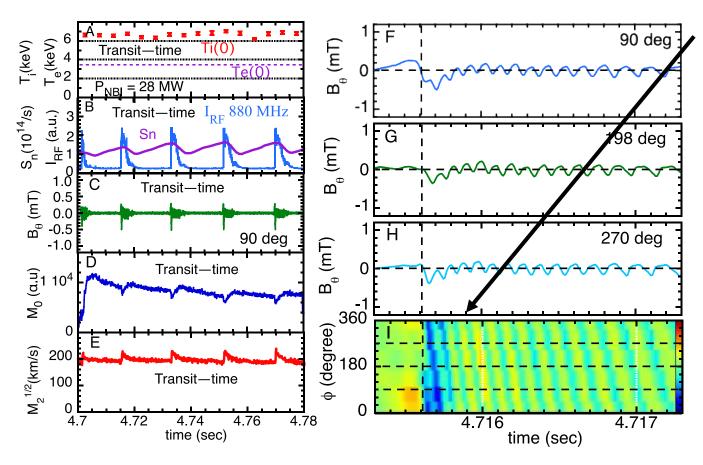
Outline

- 1. Introduction: How to heat ions in the burning plasma?
- 2. Landau and transit-time damping observed in LHD
- 3. Partial flattening of ion velocity distribution function f(v) measured with 10 kHz fast charge exchange spectroscopy
- 4. Observation of increase of kinetic energy $\int v^2 f(v) dv$
- 5. Phase-space dynamics
- 6. Summary

Direct ion heating is necessary in the burning plasma



Discharge with transit-time damping



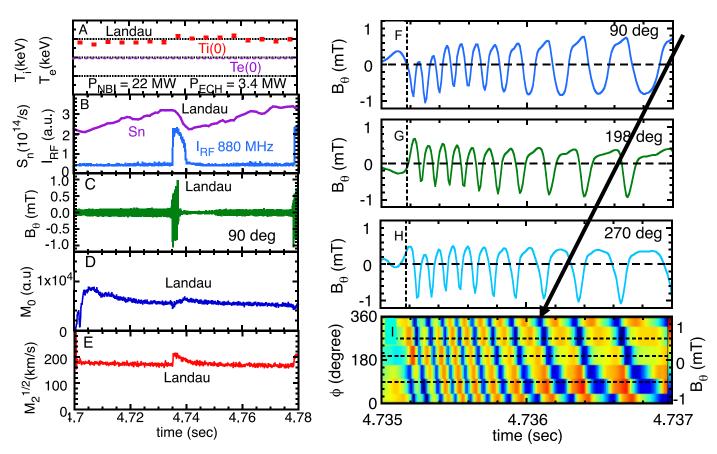
Transit-time damping is characterized by a very short magnetic field perturbation at the onset of the MHD burst.

The wave packet is short and comparable to onecycle oscillation (solitary wave).

The toroidal mode number is 1

The increase of effective thermal velocity $M_2^{1/2}$ is transient $3\sim4$ ms.

Discharge with Landau damping



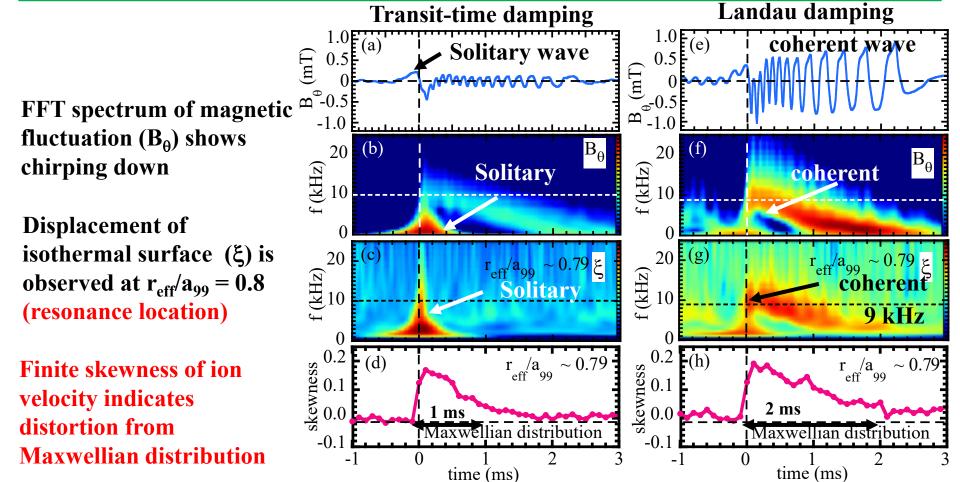
Landau damping is characterized by a magnetic field perturbation lasting more than 2 ms with frequency chirping down.

The wave packet is more 10 cycles.

The toroidal mode number is 1

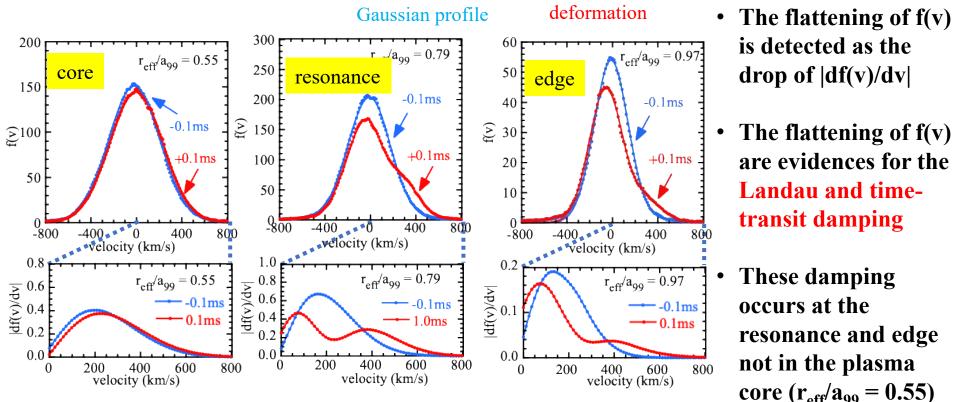
The increase of effective thermal velocity $M_2^{1/2}$ is transient but longer 5~6 ms.

Landau damping of solitary wave and coherent wave are observed



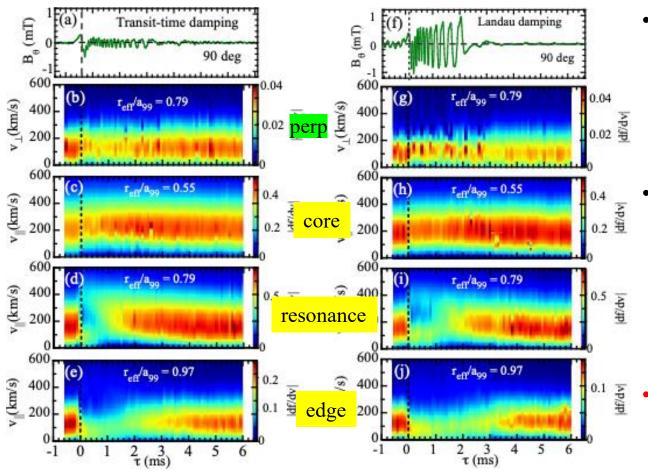
Dynamics of ion velocity distribution function f(v) measured with fast charge exchange spectroscopy (10kHz)

Ion velocity distributed function is well fitted with Gaussian + derivative of a hyperbolic tangent function as $f(v) = f_0(v) + \delta f(v) = a_0 * \exp(-(v - v_0)^2 / \sigma_0^2) + a_1 * (1 - \tanh^2((v - v_1) / \sigma_1))$



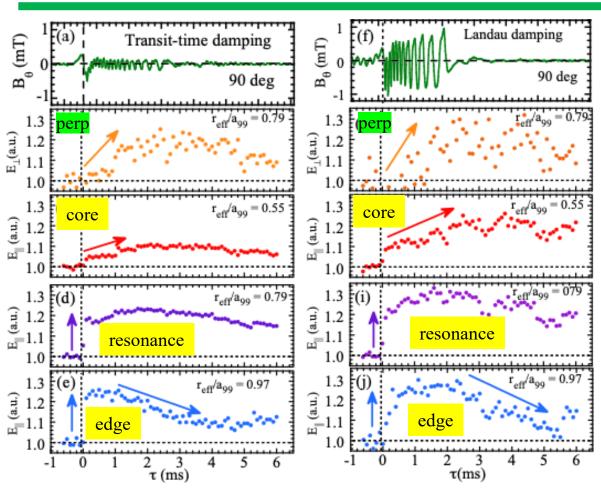
Landau and timetransit damping These damping occurs at the resonance and edge

Time evolution of gradient of velocity distribution function df(v)/dv



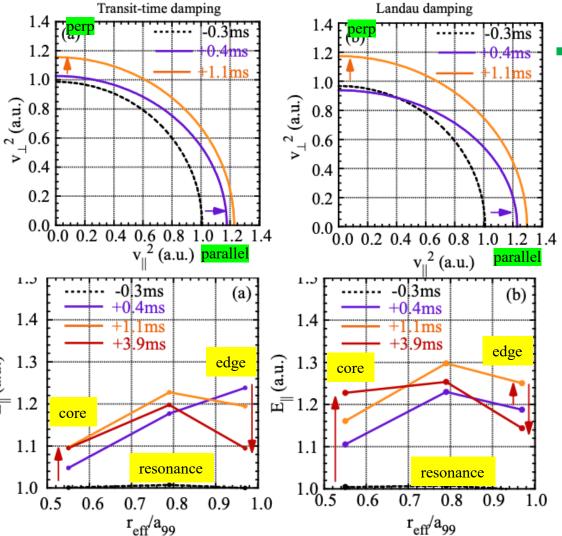
- The fattening of f(v)
 disappears within the ionion collision time scale of 1
 1.5 ms at the resonance
 location and edge.
- The time period of f(v)
 flattening is longer in the
 discharge with Landau
 damping where the
 magnetic perturbation is
 larger
- There is no f(v) flattening in the plasma core (r_{eff}/a₉₉ = 0.55)

Increase of kinetic energy is 20 - 30%



- Kinetic energy $E = \int v^2 f(v) dv$ is evaluated from the f(v) measured.
- At the resonance and plasma edge, $(r_{eff}/a_{99}=0.79 \text{ and } 0.97)$: kinetic energy jump (increase rapidly) at the onset of MHD burst within 0.1ms
- At plasma core $(r_{eff}/a_{99} = 0.55)$: kinetic energy keeps increasing after the onset of MHD burst

The 20% increase of kinetic energy is observed in the plasma core, while the transit-time and Landau damping occur near the plasma periphery.



Phase space Dynamics

Dynamics in velocity spaceAcceleration of parallel velocity is

observed within 0.4 ms

- immediately after the onset of MHD burst.Thermalization is seen in the time
- scale of ion-ion collision time scale (~1ms).

Dynamics in real space

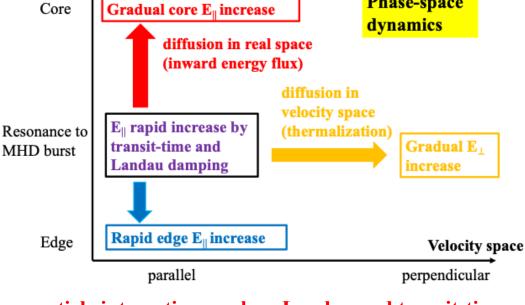
- Energy increase is most significan at the resonance
 - Gradual increase is observed in
- the core
 Kinetic energy at the plasma edge decreases.

Conclusion

The increase of ion kinetic energy in the core due to the Landau and transit-time damping of energetic-particle driven MHD wave near the plasma periphery is observed in the Large Helical **Device using fast charge exchange spectroscopy.** real space

Core

- Kinetic energy $E = \int v^2 f(v) dv$ is evaluated from the ion velocity distribution function f(v) measured with the 10kHz fast charge exchange spectroscopy.
- Kinetic energy jump (increase rapidly) at the onset of MHD burst within 0.1ms at the resonance and edge
- Kinetic energy keeps increasing and reaches 120% after the onset of MHD burst in the plasma core



Phase-space

This experiment demonstrates that the wave-particle interaction, such as Landau and transit-time damping of EP-driven MHD wave, can be a candidate for the ion heating scenario in the burning plasma, where no direct ion heating by alpha particles is expected.

Backup

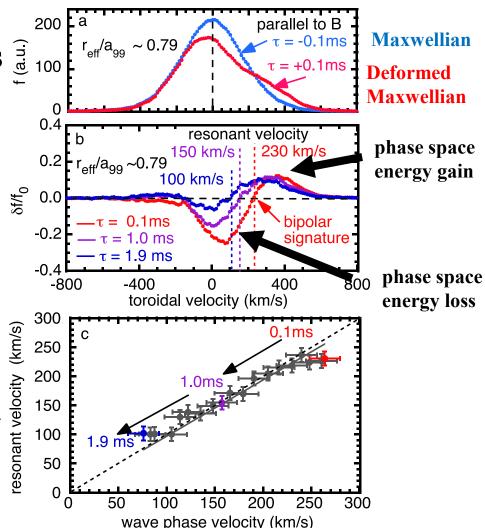
Deformation of ion velocity distribution (Bipolar signature) is observed in laboratory plasma

Bipolar signature of phase space energy gain and phase space energy loss is clearly observed at $r_{\text{eff}}/a_{99} = 0.79$.

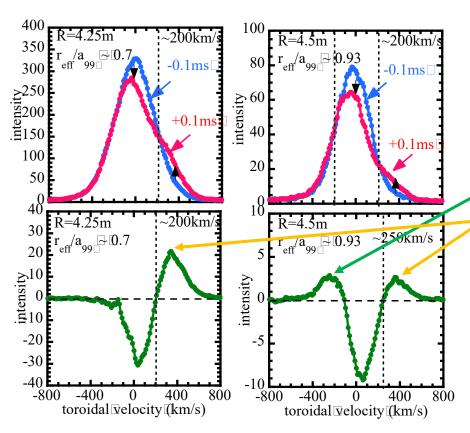
Phase space energy gain > energy loss
→ Net energy flow is wave to particle

The toroidal velocity of pivot point is the resonant velocity of wave-particle interaction

Resonant velocity decreases from 240 km/s to 100 km/s, which is consistent with the chirping down of wave frequency from 9 kHz to 4 kHz Good agreement of two velocities.



Improvement from the previous analysis



In the previous analysis

The difference in the velocity distribution function between before and after the onset of MHD burst $\delta f(v,t) = f(v,t)$ - $f(v,t_0)$ is analyzed. $(t_0 < 0)$ It is difficult to distinguish the flattening of f(v) and shift of f(v) in $\delta f(v,t)$, for the case at the plasma boundary (R=4.5m)

- Positive peak due to shift of f(v)
- Positive peak due to flattening of f(v)
- 1. Gradient of velocity distribution function df(v,t)/dv is derived from the f(v) measured.

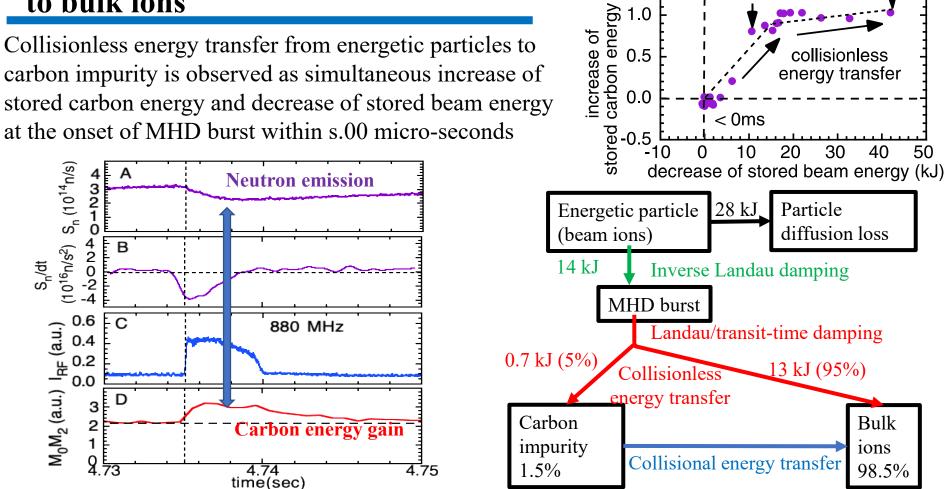
$$\delta f(v,t)$$
 \longrightarrow $df(v,t)/dv$

2. Kinetic energy $E = \int v^2 f(v) dv$ is evaluated as well as zero cross velocity v_0 where $\delta f(v_0,t) = 0$ is derived from the f(v) measured.

$$v_0$$
 for $\delta f(v_0,t) = 0$ $E = \int v^2 f(v)$

Energy flow from energetic particle to bulk ions

Collisionless energy transfer from energetic particles to



<u>S</u>

1.5

1.0

0.1ms

.2ms