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. Introduction : How to heat ions in the burning plasma?
. Landau and transit-time damping observed in LHD

Partial flattening of ion velocity distribution function f(v)
measured with 10 kHz fast charge exchange spectroscopy

Observation of increase of kinetic energy [v¥(v) dv
Phase-space dynamics

Summary



Direct ion heating is necessary in the burning plasma
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Discharge with transit-time damping
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Transit-time damping is

-3/ characterized by a very

short magnetic field
perturbation at the onset
of the MHD burst.

The wave packet is short
and comparable to one-
cycle oscillation (solitary
wave).

The toroidal mode
number is 1

The increase of effective
thermal velocity M, is
transient 3~4 ms.



Discharge with Landau damping

A ‘Landau . '

- I Te(0)
- Png =22 MW Pepyy = 3.4 MW

2 =3 _B Landau _
< E 2
o 8 2F Sn F
1:: wq | Iz 880 MHz E
»w — i .

1.81-0 ; " "

Landau

o -OSF 90 deg

Landau

0,7 472 474 476 478
time (sec)

90 deg

4.735 4.736 4.737
time (sec)

Landau damping is
characterized by a
magnetic field
perturbation lasting
more than 2 ms with
frequency chirping down.

The wave packet is more
10 cycles.

The toroidal mode
number is 1

The increase of effective
thermal velocity M, is
transient but longer 5~6
ms.



Landau damping of solitary wave and coherent wave are observed
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Dynamics of 10n velocity distribution function f(v) measured with

fast charge exchange spectrosco

10kHz

Ion velocity distributed function is well fitted with Gaussian + derivative of a hyperbolic tangent
function as f(v) = f(v) + 8f(v) = a,“exp(-(v-v,) ?/ 6,%) + a,*(1-tanh?((v-v,)/c,))

Gaussian profile
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* The flattening of f(v)
is detected as the
drop of |df(v)/dv|

The flattening of f(v)
are evidences for the
Landau and time-
transit damping

These damping
occurs at the
resonance and edge
not in the plasma
core (I /g9 = 0.55)



v.(km's) v (km's) v, (km/s)

v (km/s)

B (mT)

ot
\p

600 . Ll '
400
200

0
600

400
200

0
600

400}
200}

-0
600

400|
200

resonance |

idf/dv|

600

—_

edge 200 '

2 400

0\

{df/dv|

{df/dv]|

Time evolution of gradient of VG]OCitZ distribution function dfs \Y 2/ dv

* The fattening of f(v)
disappears within the ion-
ion collision time scale of 1
— 1.5 ms at the resonance
location and edge.

* The time period of f(v)
flattening is longer in the
discharge with Landau
damping where the
magnetic perturbation is
larger

* There is no f(v) flattening
in the plasma core (r.4/ay9
= 0.55)



Increase of kinetic energy is 20 — 30%

« Kinetic energy E = [vf(v)dv is
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Phase space Dynamics

Dynamics in velocity space

* Acceleration of parallel velocity is
observed within 0.4 ms
immediately after the onset of
MHD burst.

 Thermalization is seen in the time
scale of ion-ion collision time scale
(~ 1ms).

Dynamics in real space

* Energy increase is most significan
at the resonance

* Gradual increase is observed in
the core

* Kinetic energy at the plasma edge
decreases.



Conclusion

The increase of ion Kinetic energy in the core due to the Landau and transit-time damping of
energetic-particle driven MHD wave near the plasma periphery is observed in the Large Helical

Device using fast charge exchange spectroscopy.

real space
« Kinetic energy E = [v2f(v)dv is evaluated Phase-shace
from the ion velocity distribution function Core | | Gradual core E) increase dynamiss
f(v) measured with the 10kHz fast charge diffusion in real space
exchange spectroscopy. (inward energy flux)
* Kinetic energy jump (increase rapidly) at Resonance to| [Ey rapid increase by
the onset of MHD burst within 0.1ms at MHD burst transit-time and
the resonance and edge Landau damping
* Kinetic energy keeps increasing and l
reaches 120% after the onset of MHD Edge | [Rapidedge By increase Velocity space

burst in the plasma core

parallel perpendicular

This experiment demonstrates that the wave-particle interaction, such as Landau and transit-time
damping of EP-driven MHD wave, can be a candidate for the ion heating scenario in the burning
plasma, where no direct ion heating by alpha particles is expected.



Backup



Deformation of ion velocity

observed in laboratory plasma
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Improvement from the previous analysis

In the previous analysis
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Energy flow from energetic particle
to bulk ions

Collisionless energy transfer from energetic particles to
carbon impurity is observed as simultaneous increase of
stored carbon energy and decrease of stored beam energy
at the onset of MHD burst within s.00 micro-seconds
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