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1. SYNOPSIS

The  motivation  of  the  present  study  is  simulating  the  CDC event  to  gain  a  better  understanding  of  how
instabilities located in the plasma periphery can induce the plasma collapse at the core, an analysis relevant to
the design of future stellarator reactors with low magnetic shear and resonant rational surface of high toroidal
mode families at the plasma periphery. Towards that goal, linear and nonlinear simulations are performed using
an updated version of the FAR3d code; this includes the parallel magnetic field perturbation by imposing a
radial balance between the magnetic and plasma pressure and neglecting the magnetic field bending effect [4,5].
Linear simulations, fig. 1, shows the destabilization of ballooning modes by the toroidal mode families above
n=17 at the plasma periphery, around r/a = 0.7, radial location consistent to the experiment.

Fig 1. (a) Ballooning modes growth rate. Pressure eigenfunction of (b) n=26 and (c) n=30 perturbations.

Fig  2 shows  a  perturbation  at  the  outer  plasma (from t  = 2400tA0) with amplitude  increasing  through the
simulation. From t = 2480tA0, the perturbation at the outer plasma propagates towards the plasma periphery, and
middle plasma region. The amplitude of the perturbation  covering r/a = 0.4 to 1.0  further increases until the
inner plasma is destabilized at t = 2560tA0. Four simulation phases are observed:
-Phase I: t = 2400 – 2480tA0, High n ballooning mode destabilization.
Phase II: t = 2480 – 2560tA0, High n ballooning mode saturation and inverse energy cascade to middle and low n
modes. Low n modes are n=1 - 10, middle n modes n=11 - 20 and high n modes n=21 - 30.
-Phase III: t = 2560 – 2600tA0, inner plasma unstable and low n mode destabilization.
-CDC-like event: t > 2600tA0, low n modes induce a partial collapse of the pressure profile.
Inwards perturbation propagation and time scale of the simulation, 0.45 ms, consistent with the experiment.

Fig 2. Evolution of the poloidal magnetic field perturbation through the simulation at r/a=0.2 (black), 0.4 (red),
0.6 (blue), 0.8 (cyan) and 1.0 (pink). Dashed vertical orange lines indicate different simulation phases. 
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Fig 3, panels a to d, show an energy inverse cascade from the saturating high n ballooning modes towards
middle and low n modes, leading to the destabilization of the 1/1 mode in the CDC phase. Panel e indicates an
m=1 perturbation nearby the magnetic axis. Panel f and g show the stochastization of the magnetic surfaces in
the inner plasma by the m=1 perturbation leading to a partial collapse of the pressure gradient. 

Fig 3. Magnetic energy evolution of (a) n=1-10, (b) n=11-20, (c) n=21-30 and (d) n=0. (e) Poloidal contour of
the pressure perturbation for n=1-10. (f) Magnetic field Poincare plot. (g) Pressure profile evolution.

Summarizing, the simulations reproduce several features of the CDC observed in the experiments, particularly
the perturbation inward propagation from the plasma periphery towards the plasma core. The plasma pressure
collapse in the inner plasma may be caused by the stochastization of the magnetic surfaces induced by the m=1
perturbation at the plasma core, triggered by the inverse energy  cascade from the saturating ballooning modes
towards low n modes. The simulations also indicate the important role of the parallel magnetic field perturbation
in the destabilization of the ballooning modes.
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