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 Where/when melting occurs:
* TQ (~6 ms): first melting on FWP #11, short melt duration (~2 ms)

« CQ (~240ms): Strongest melting on FWP #10 on upper port wings (near perp. Incidence),
long melt durations ~20 ms
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Fig 10. Maximum surface temperature (left) and melt duration (right) on the ITER FW during a 15MA unmitigated upward VDE. The FW surface is represented in toroidal ¢
and poloidal 6 coordinates, with the poloidal index of the FW panels (#). Black dots mark elements where the surface temperature exceeds the W melting point (>3695K).

Conclusions and future work

« Magnetics: current-centroid position, = s, A o

and toroidal asymmetries from Fig 5. (a) View of

Gerasimov’s magnetic diagnostics Sroming i - Validation (JET): Global trends and energy deposition reproduced; CQ conduction-limited — weak
analysis [6,7]. ko e s sensitivity to simplified BCs. Melting requires TQ+CQ (TQ pre-heats, CQ sustains).

and saddles. (b)

- Thermocouples (TCs): Subsurface JET vessel octant * ITER (15 MA upward VDE, CQ 240 ms):

_ equipped vyith
TCs in Be Upper Dump Plates (UDP, D ool and - Main W FWPs: only marginal, short melts.
Octant 2) « Strong melt near upper ports: tens of ms melts due to near-normal incidence.
 Halo-current shunts (“mushroom?”, - Toroidal asymmetries raise peaks (x2 CQ, x3 TQ), while MHD and motion broadens deposition.
MS) Energy poloidal spread 1 is tens of cm.

-> Contrast: 2D TOKES shows CQ melting at 10 MA [3] for W FW due to fixed EQ.,& Az =3.5 cm

* Next steps:
Include radiation & impurity physics, improved sheath/density BCs. Couple to melt-evolution solvers

(e.g., MEMENTO) for melt motion/droplet/lifetime impacts; TOKES TQ studies guided by these results,
_ including possible self-mitigation via W evaporation/radiation. )
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« Calorimetry: TC-based inversion [8]
—> total deposited energy
(requires internal thermal equilibrium =
cannot split pre-disruptive vs disruption).
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Low field side

High field side

. Thermocouple measurement

— Disruption energy isolation by
subtraction using reference shots:
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