

Automated design rationalization of robot component configuration for in-vessel task of ITER Blanket Remote Handling System

T. Iwamoto (iwamoto.takuya@qst.go.jp), Y. Noguchi, N. Takeda National Institutes for Quantum Science and Technology, Naka-city, Ibaraki-prefecture, Japan

Conclusion

- Developed an automated design process to optimize robotic component for ITER Blanket Remote Handling System (BRHS).
- Integrated automated re-configuration of component geometry, load reduced path-planning, and Bayesian optimization for efficient design iteration.
- Optimized the design of the BRHS components with approximately one-tenth the number of iterations compared to the conventional process.

Kinematic difficulty in SB handling

Several design changes caused kinematic challenging areas in SB handling.

Adding "Offset" structure to SBG

Target SB

 $0 \le X \le 500$ $0 \le Y \le 500$ $400 \le Z \le 700$ $20 \le \theta \le 80$

Developed design

path-planning

Torque Evaluated joint

Design parameter $\mathbf{x} = (X, Y, Z, \theta)$

Result

Target

Samples Projection to (Z, θ) Plane

Obtained Solution

Required torque comparison

⇒Achieves better optimality with fewer iterations.