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Silicon carbide (SiC) is widely recognised for its superior thermal and

mechanical properties, including high-temperature stability above 1273 K 0o

\

and strength exceeding 600 MPa.
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These qualities make it an attractive candidate for use in nuclear

environments, particularly in TRISO fuel particles for high-temperature gas- * The majority of irradiation-
induced defects were mobile at

relatively low temperatures.
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cooled reactors.

SiC also finds applications in high-stress industrial environments, such as 3
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METHODS

The Arrhenius plot of volume recovery of PureBeta-SiC and CVD-SiC
Both SiC variants were simultaneously irradiated in the BR2 reactor (SCK  according to k value which obtained by first order reaction with divided and

CEN, Belgium) under identical conditions. The irradiation was performed at  fitted into two straight lines along isothermal annealing time

a nominal temperature of 340 = 10 K for a duration of 60 days, achieving CONCLUSION

a fast neutron fluence of approximately 2.1 X 10** n/m? (E > 0.1 MeV),

eBoth B-SiC materials exhibited four distinct recovery stages, each

equivalent to 0.21-0.25 displacements per atom (dpa).

. L. . . characterised by different activation energies.
Post-irradiation, each bar was sectioned into smaller coupons for

. . . , , , , e A majority of recovery approximately 75% occurred below 950 C, likely due
annealing measurements using a high-resolution dilatometer in a flowing

, , to recombination of closely spaced carbon and silicon Frenkel pairs, without
helium environment.

. requiring significant long-range migration
Isochronal annealing was performed from room temperature up to 1673 K ; s &-rans 5

in 50 K increments, with each temperature step maintained for 6 hours.
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