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Shear plasma flows, which are almost uniform along the magnetic surfaces, are observed on many tokamaks and 

stellarators [1]. The flows characterized by the oscillations of the electric potential at a frequency about ~ 20 kHz 

are known as geodesic acoustic modes (GAMs) while the zonal flows (ZFs) have frequencies about or less than 

several kHz. The flows of both types are thought to regulate drift-wave turbulence and to play an important role 

in having H-mode regimes. That is why the study of their mutual dynamics and interaction looks very relevant.  

Usually, GAM is stable and has a finite frequency [2]. Stability of ZF depends on the distribution of the entropy 

on the magnetic surfaces. If the entropy is constant on the magnetic surface, the ZF is stationary; if not – ZF can 

be either oscillatory or linearly unstable. The “unfreezing” of the entropy from magnetic surfaces can be provided 

by different factors, e.g., by the stationary toroidal plasma rotation [3]. 

This paper presents the results of the modeling of joint dynamics of GAM and ZF in a toroidally rotating tokamak 

plasma. The model is based on the magnetohydrodynamics and takes into account quadratic nonlinearities (the 

right-hand sides of the equations):   
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The first two equations correspond to the equations of continuity and adiabaticity, the third equation is the 

longitudinal projection of the equation of motion, the fourth one is the condition for quasi–neutrality of 

perturbations – see the detailed derivation in Ref. [4]. The values 𝜌, 𝑝, 𝑣 = 𝜌, 𝑝, 𝑣(Ψ, 𝜃, 𝑡) are the normalized 

perturbations of density, pressure, and longitudinal plasma velocity, respectively; the value 𝐴(Ψ, 𝑡) is proportional 

to the perturbation of the radial electric field, 𝑡 is the time normalized on the sound frequency 𝜔𝑠, 𝜃 is the poloidal 

angle, Ψ is the label of the magnetic surface, 𝑞(Ψ) is the safety factor, 𝑀(Ψ) is the Mach number of the stationary 

toroidal plasma rotation, 𝛾 is the adiabatic index, the constant 𝛼 determines the thermodynamic function, which 

is constant on the magnetic surface in the equilibrium, so that  𝑝0/𝜌0
𝛼 = Π(Ψ). 

Without the nonlinear terms in the right-hand sides of the equations, the system reduces to the well-known 

dispersion law in a toroidally rotating plasma [5]: 
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The higher root of the dispersion equation corresponds to the square of the GAM frequency, and the lower one – 

to ZF; ZF is unstable (𝜔2 < 0) at 𝛼 > 𝛾.  

Due to the nonlinearity, the obtained set of equations describes a variety of oscillation regimes, the onset of which 

can depend on the equilibrium parameters and starting conditions. Below the results of the typical regime 

calculations are presented. Linearly unstable ZF appears to be stabilized due to nonlinear interaction with GAM. 

In a linear calculation (Fig.1 on the left), the amplitude of the initial perturbation increases indefinitely with time: 
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𝑡. The perturbations under nonlinear modeling (Fig.1 on the right), initially growing, 

then reach their maxima and transform in low-frequency oscillations of finite amplitudes. The low-frequency ZF 

mode appears to be modulated by high-frequency oscillations at the frequency of GAM.   
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Fig.1. Temporal dynamics (linear on the left, nonlinear on the right) of ZF oscillations. The subscripts c and s correspond 

to the 𝑐𝑜𝑠- and 𝑠𝑖𝑛-poloidal harmonics of the pressure. 

 

 

 

 

Fig.2. Spectrogram of potential 

perturbations in the discharge 

with Ohmic and auxiliary ECRH 

of tokamak T-10 [6] (top), the 

result of nonlinear modeling 

(bottom). 

 

 

 

In the spectrum of GAM oscillations, the observed dynamics manifests itself in the form of bursts. Figure 2 shows 

the evolution of the GAM power spectrum calculated within the framework of the presented model (down graph) 

which correlates evidently with the typical experimental pattern of perturbations (top) in the tokamak T-10 [6].  

The demonstrated nonlinear interaction of GAM and ZF is a possible reason for the observed intermittency and 

periodic modulation of GAM [7]. The interaction with unstable ZF serves as an excitation mechanism for the 

GAM, which clarifies the regular observation of this linearly stable mode in the experiments.  
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