

OPTIMAL DESIGN OF FAST PLASMA BOUNDARY CONTROL CONSIDERING VERTICAL INSTABILITY FEATURES USING IN-VESSEL COILS IN JT-60SA

 $\beta_N = 2$

ITER

● JT-60SA This study

JT-60SA Previous study[3] (Sim. w FPPC)

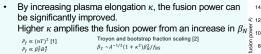
JT-60SA

R [m]

 $\Delta Z = \delta Z e^{|\Upsilon|\Delta t}$

(Exp. w/o FPPC)

KSTAR


FAST

S. Kojima, S. Inoue, Y. Ko, Y. Miyata, H. Urano, T. Suzuki National Institutes for Quantum Science and Technology

Introduction: High elongation is one of the keys for Fusion

- However, an increase in plasma elongation raises the growth rate of vertical instability, causes a VDE.
- Especially, a superconducting tokamak is difficult to sustain high elongation. Larger tokamak results in slower coil current change due to large inductance, I = (V*t)/L.
- To control vertical displacement, fast control by normalconducting coils is implemented (KSTAR, EAST, JT-60SA, ITER)

Demonstration of high elongation (κ > 2) with a single-null (SN) configuration in MECS simulation

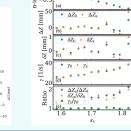
Upper Divertor: 0.45 MW/m² for 100 s [4] Lower Divertor (water-cooled CFC tiles): 10 MW/m² for 5 s Lower Divertor (water-cooled CFC monoblocks): 15 MW/m² for 100 s

- Reconsider the physics for the vertical instability.
- Design to control a single null configuration.
- Design to coordinate in-vessel coil control and SC coil control.

Plasma boundary should be controlled

- Examined the natural VDE in the MECS simulation.
 - → Plasma boundary moves faster than the center.
 - The growth rate and amplitude of VDE are investigated for varying elongation levels.

Position/Shape control


 $G_{PS}\delta\psi_{S_SC} + G_{IS} \int \delta\psi_{S_SC} dt + G_{DS} \frac{d\delta\psi_{S_SC}}{dt}$

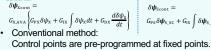
 $\delta \psi_{SSC} = \psi_{surf.} - \psi_{cont.}$

 $\delta \psi_{\text{Scont}} =$

- The reason for the faster displacement at the plasma boundary is the larger
- amplitude at the boundary [3]. Higher elongation results in larger amplitude at the boundary. §

EF3

 $\psi_{
m NU}$


EF5 ψ_{NI}

0

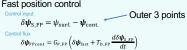
EF2

SC coils control: DCP scheme is applied

Plasma current control $\delta\psi_{\rm X} = -L_{\rm p}(I_{\rm p_ref} - I_{\rm p_mes})$

- \rightarrow It cannot directly control κ & δ . Dynamic Control Point (DCP) scheme [5]:
- Control points are arranged based on κ , δ . Upper and lower control points are arranged at
- the intersections of LCFS and a circle.

+ Null configuration control


To keep a single null (SN) configuration,

 $\psi_{\text{Diff}} = \psi_{\text{NL}} - \psi_{\text{NH}} > 0$

Coils current change → Coil voltage command

$$\begin{split} \delta I_{\text{SC}} &= \textit{M}^{\dagger} (\delta \psi_{\text{Xcont.}} + \delta \psi_{\text{Scont.}}) & \delta I_{\text{FP}} &= \textit{M}^{\dagger} (\delta \psi_{\text{FP}}) \\ \delta I_{\text{coil}} &= (\delta I_{\text{SC}} \, \delta I_{\text{FP}})^T & \xrightarrow{\text{Control output}} & \textit{M}_{\text{c}} \frac{dI_{\text{coil}}}{dt} + \frac{d(\textit{M}_{\text{Pl}}I_{\text{P}})}{dt} \end{split}$$

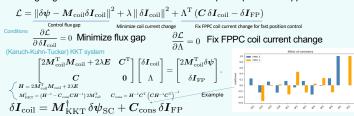
Summary & Future work

- Reconsider the physics for the vertical instability.
 - → Plasma boundary, which has high amplitude, should be controlled.
- Design to control a single null configuration.
- By applying the ISO-FLUX scheme to sustain the flux gap between the upper and lower null-points, a lower single null configuration is sustained at κ =2.05.
- Design to coordinate in-vessel coil control and SC coil control. Not only the frequency separation technique, using the KKT system, the SC coil current change is calculated while fixing the FPPC coil current change for fast plasma control. → Control interference is avoided & the controllability is improved.
- High elongation x>2 with SN can be stably controlled in JT-60S
- Development of a long pulse 5.5MA scenario with &pprox2.0 is challenging. Issues: FPPC coil current is saturated due to the small and fast oscillations of the control points by DCP control, around 5MA. Solutions: Low-pass filtering for locations of control points / Adaptive dumper for FPPC coil current

KKT system: Avoiding control interference

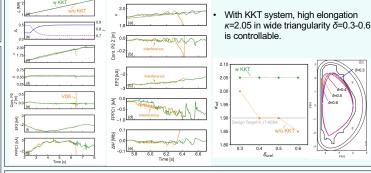
Conventional approach:

Frequency separation worked to focus the variable frequency sc onlis and scale frequency sc online freq of coil current change by SC coils and FPPC coils.

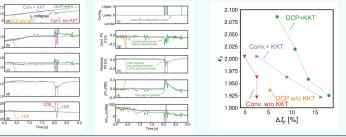

→ Less coupling issues between SC and FPPC coils

DCP control: Control points are moved. Controlling magnetic flux gap $\delta \pmb{\psi}_{\mathrm{FP}}$ directly affects on magnetic flux gap $\delta \psi_{\rm SC}$ controlled by SC coils. \rightarrow Control interference.

R,Z position depend on LCFS ed control points: Plasma motion does not affect the gnetic flux gap at the location of control points.


The Lagrangian function with the constrained least squares problem is applied.

FPPC coil current change by the fast position control can be incorporated.


DCP + KKT: Controllable region is expanded κ>2.05

- DCP control without KKT system causes the control interference triggering VDE. Elongation is limited to κ ~1.9.
- DCP control with KKT system avoids the control interference resulting in κ >2.0.

DCP+KKT: Stable Control for disturbance

- A minor I_0 collapse causes VDE due to reduced wall stabilization.
- Conventional control using pre-programmed control points also demonstrates the effectiveness of using the KKT system.
- The influence of KKT is significant in DCP control, with or without it.
- DCP control with KKT system can avoid VDE, even with 8% of Ip collapse at κ=2.08.

References