Augmenting the extrapolation of disruption prediction to extended
parameter regimes by predict-first neural network
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Background PFNN: Predict-First Neural Network

« Plasma disruption is a critical challenge to the safe operation of  As HL-3's operational parameters continue to rise, disruption predictors
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tokamak devices. must adapt to avoid frequent failures. Our Parameter Preview Neural

* The current primary approach to managing disruptions follows the Network (PPNN) addresses this by first forecasting plasma evolution, then

paradigm of prediction—avoidance—mitigation. using the prediction-reality discrepancy as a disruption criterion. This logic

* However, for future fusion reactors, it remains an underexplored issue shift enables superior extrapolation across parameter regimes.
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disruption warning in high-parameter operational regimes.
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* This study utilizes the HL-3 tokamak to test the extrapolation capability

of disruption prediction algorithms across different parameter regimes
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and conducts targeted optimizations.
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HL-3 Dataset ' [

« Since its initial plasma discharge in 2020, HL-3 has continuously i J [ e ] [
Fig 2 the overall architecture of the PFNN model.

elevated its operational parameters, establishing an broad dataset.

» Up to now, the dataset comprises 3819 validated discharges. Figure 1 * Figure 3 shows the cross-regime testing results across key parameter

illustrates the distribution relationships among the maximum plasma intervals. The PFNN substantially outperforms the baseline in prediction

current (/,), average toroidal field strength (B;), and maximum accuracy.

normalized beta (8,).
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Figure 1. Distribution of plasma current, toroidal field, and beta
normal in the HL-3 disruption database.

 The dataset is divided into 5 X 4 sub datasets according to the 0.652 | 0.649

parameter regimes of plasma, as shown in Table 1.
Dataset ID

 The sub datasets with ID:1 are used to train and validate the disruption

prediction models. And sub datasets with |ID:2~4 are used to test the

Real-Time Prediction and Mitigation
Supported by PFNN, HL-3 has achieved real-time disruption prediction and

extrapolation capabillity.

Table 1 The parameter scope and number of shots within each o
sub datasets.
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